--- license: apache-2.0 base_model: microsoft/swinv2-small-patch4-window8-256 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swinv2-small-patch4-window8-256-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.6818181818181818 --- # swinv2-small-patch4-window8-256-finetuned-eurosat This model is a fine-tuned version of [microsoft/swinv2-small-patch4-window8-256](https://huggingface.co/microsoft/swinv2-small-patch4-window8-256) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.2850 - Accuracy: 0.6818 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.91 | 5 | 0.5918 | 0.7338 | | 0.6689 | 2.0 | 11 | 0.6330 | 0.7013 | | 0.6689 | 2.91 | 16 | 0.6016 | 0.7013 | | 0.5503 | 4.0 | 22 | 0.6296 | 0.7143 | | 0.5503 | 4.91 | 27 | 0.7059 | 0.5455 | | 0.3911 | 6.0 | 33 | 0.8002 | 0.5260 | | 0.3911 | 6.91 | 38 | 0.7831 | 0.7013 | | 0.2624 | 8.0 | 44 | 0.7862 | 0.6429 | | 0.2624 | 8.91 | 49 | 1.0588 | 0.5649 | | 0.1057 | 10.0 | 55 | 0.9249 | 0.6429 | | 0.0644 | 10.91 | 60 | 1.0545 | 0.6558 | | 0.0644 | 12.0 | 66 | 1.0990 | 0.6494 | | 0.0265 | 12.91 | 71 | 1.1942 | 0.6234 | | 0.0265 | 14.0 | 77 | 1.2192 | 0.6429 | | 0.0152 | 14.91 | 82 | 1.2414 | 0.6623 | | 0.0152 | 16.0 | 88 | 1.3708 | 0.6299 | | 0.0146 | 16.91 | 93 | 1.3162 | 0.6558 | | 0.0146 | 18.0 | 99 | 1.2849 | 0.6818 | | 0.0204 | 18.18 | 100 | 1.2850 | 0.6818 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.2.1+cpu - Datasets 2.18.0 - Tokenizers 0.15.2