from typing import Dict, List, Any | |
from transformers import AutoProcessor, MusicgenForConditionalGeneration | |
import torch | |
class EndpointHandler: | |
def __init__(self, path=""): | |
# load model and processor from path | |
self.processor = AutoProcessor.from_pretrained(path) | |
self.model = MusicgenForConditionalGeneration.from_pretrained(path).to("cuda") | |
def __call__(self, data: Dict[str, Any]) -> Dict[str, str]: | |
""" | |
Args: | |
data (:dict:): | |
The payload with the text prompt and generation parameters. | |
""" | |
# process input | |
inputs = data.pop("inputs", data) | |
parameters = data.pop("parameters", None) | |
# preprocess | |
inputs = self.processor( | |
text=[inputs], | |
padding=True, | |
return_tensors="pt",).to("cuda") | |
# pass inputs with all kwargs in data | |
if parameters is not None: | |
outputs = self.model.generate(**inputs, max_new_tokens=256, **parameters) | |
else: | |
outputs = self.model.generate(**inputs, max_new_tokens=256) | |
# postprocess the prediction | |
prediction = outputs[0].cpu().numpy() | |
return [{"generated_audio": prediction}] |