Push model using huggingface_hub.
Browse files- README.md +5 -38
- config.json +84 -1
README.md
CHANGED
@@ -1,42 +1,9 @@
|
|
1 |
---
|
2 |
-
license: agpl-3.0
|
3 |
tags:
|
4 |
-
-
|
5 |
-
-
|
6 |
-
- yolov10
|
7 |
-
datasets:
|
8 |
-
- detection-datasets/coco
|
9 |
---
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
- arXiv: https://arxiv.org/abs/2405.14458v1
|
15 |
-
- github: https://github.com/THU-MIG/yolov10
|
16 |
-
|
17 |
-
### Installation
|
18 |
-
```
|
19 |
-
pip install supervision git+https://github.com/THU-MIG/yolov10.git
|
20 |
-
```
|
21 |
-
|
22 |
-
### Yolov10 Inference
|
23 |
-
```python
|
24 |
-
from ultralytics import YOLOv10
|
25 |
-
import supervision as sv
|
26 |
-
import cv2
|
27 |
-
|
28 |
-
IMAGE_PATH = 'dog.jpeg'
|
29 |
-
|
30 |
-
model = YOLOv10.from_pretrained('jameslahm/yolov10n')
|
31 |
-
model.predict(IMAGE_PATH, show=True)
|
32 |
-
```
|
33 |
-
|
34 |
-
### BibTeX Entry and Citation Info
|
35 |
-
```
|
36 |
-
@article{wang2024yolov10,
|
37 |
-
title={YOLOv10: Real-Time End-to-End Object Detection},
|
38 |
-
author={Wang, Ao and Chen, Hui and Liu, Lihao and Chen, Kai and Lin, Zijia and Han, Jungong and Ding, Guiguang},
|
39 |
-
journal={arXiv preprint arXiv:2405.14458},
|
40 |
-
year={2024}
|
41 |
-
}
|
42 |
-
```
|
|
|
1 |
---
|
|
|
2 |
tags:
|
3 |
+
- pytorch_model_hub_mixin
|
4 |
+
- model_hub_mixin
|
|
|
|
|
|
|
5 |
---
|
6 |
|
7 |
+
This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration:
|
8 |
+
- Library: [More Information Needed]
|
9 |
+
- Docs: [More Information Needed]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
config.json
CHANGED
@@ -1,3 +1,86 @@
|
|
1 |
{
|
2 |
-
"model": "yolov10n.yaml"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
}
|
|
|
1 |
{
|
2 |
+
"model": "yolov10n.yaml",
|
3 |
+
"names": {
|
4 |
+
"0": "person",
|
5 |
+
"1": "bicycle",
|
6 |
+
"2": "car",
|
7 |
+
"3": "motorcycle",
|
8 |
+
"4": "airplane",
|
9 |
+
"5": "bus",
|
10 |
+
"6": "train",
|
11 |
+
"7": "truck",
|
12 |
+
"8": "boat",
|
13 |
+
"9": "traffic light",
|
14 |
+
"10": "fire hydrant",
|
15 |
+
"11": "stop sign",
|
16 |
+
"12": "parking meter",
|
17 |
+
"13": "bench",
|
18 |
+
"14": "bird",
|
19 |
+
"15": "cat",
|
20 |
+
"16": "dog",
|
21 |
+
"17": "horse",
|
22 |
+
"18": "sheep",
|
23 |
+
"19": "cow",
|
24 |
+
"20": "elephant",
|
25 |
+
"21": "bear",
|
26 |
+
"22": "zebra",
|
27 |
+
"23": "giraffe",
|
28 |
+
"24": "backpack",
|
29 |
+
"25": "umbrella",
|
30 |
+
"26": "handbag",
|
31 |
+
"27": "tie",
|
32 |
+
"28": "suitcase",
|
33 |
+
"29": "frisbee",
|
34 |
+
"30": "skis",
|
35 |
+
"31": "snowboard",
|
36 |
+
"32": "sports ball",
|
37 |
+
"33": "kite",
|
38 |
+
"34": "baseball bat",
|
39 |
+
"35": "baseball glove",
|
40 |
+
"36": "skateboard",
|
41 |
+
"37": "surfboard",
|
42 |
+
"38": "tennis racket",
|
43 |
+
"39": "bottle",
|
44 |
+
"40": "wine glass",
|
45 |
+
"41": "cup",
|
46 |
+
"42": "fork",
|
47 |
+
"43": "knife",
|
48 |
+
"44": "spoon",
|
49 |
+
"45": "bowl",
|
50 |
+
"46": "banana",
|
51 |
+
"47": "apple",
|
52 |
+
"48": "sandwich",
|
53 |
+
"49": "orange",
|
54 |
+
"50": "broccoli",
|
55 |
+
"51": "carrot",
|
56 |
+
"52": "hot dog",
|
57 |
+
"53": "pizza",
|
58 |
+
"54": "donut",
|
59 |
+
"55": "cake",
|
60 |
+
"56": "chair",
|
61 |
+
"57": "couch",
|
62 |
+
"58": "potted plant",
|
63 |
+
"59": "bed",
|
64 |
+
"60": "dining table",
|
65 |
+
"61": "toilet",
|
66 |
+
"62": "tv",
|
67 |
+
"63": "laptop",
|
68 |
+
"64": "mouse",
|
69 |
+
"65": "remote",
|
70 |
+
"66": "keyboard",
|
71 |
+
"67": "cell phone",
|
72 |
+
"68": "microwave",
|
73 |
+
"69": "oven",
|
74 |
+
"70": "toaster",
|
75 |
+
"71": "sink",
|
76 |
+
"72": "refrigerator",
|
77 |
+
"73": "book",
|
78 |
+
"74": "clock",
|
79 |
+
"75": "vase",
|
80 |
+
"76": "scissors",
|
81 |
+
"77": "teddy bear",
|
82 |
+
"78": "hair drier",
|
83 |
+
"79": "toothbrush"
|
84 |
+
},
|
85 |
+
"task": "detect"
|
86 |
}
|