File size: 1,472 Bytes
266a1ad b36c269 266a1ad b36c269 9096a24 b36c269 9096a24 5ec1313 266a1ad b36c269 5ec1313 b36c269 5ec1313 b36c269 5ec1313 b36c269 5ec1313 b36c269 5ec1313 b36c269 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
---
license: agpl-3.0
tags:
- object-detection
- computer-vision
- yolov10
- pytorch_model_hub_mixin
datasets:
- detection-datasets/coco
library_name: yolov10
inference: false
---
### Model Description
[YOLOv10: Real-Time End-to-End Object Detection](https://arxiv.org/abs/2405.14458v1)
- arXiv: https://arxiv.org/abs/2405.14458v1
- github: https://github.com/THU-MIG/yolov10
### Installation
```
pip install git+https://github.com/THU-MIG/yolov10.git
```
### Training and validation
```python
from ultralytics import YOLOv10
model = YOLOv10.from_pretrained('jameslahm/yolov10s')
# Training
model.train(...)
# after training, one can push to the hub
model.push_to_hub("your-hf-username/yolov10-finetuned")
# Validation
model.val(...)
```
### Inference
Here's an end-to-end example showcasing inference on a cats image:
```python
from ultralytics import YOLOv10
model = YOLOv10.from_pretrained('jameslahm/yolov10s')
source = 'http://images.cocodataset.org/val2017/000000039769.jpg'
model.predict(source=source, save=True)
```
which shows:
![image/png](https://cdn-uploads.huggingface.co/production/uploads/628ece6054698ce61d1e7be3/33BsCwWkygl6cEHQHAjjH.png)
### BibTeX Entry and Citation Info
```
@article{wang2024yolov10,
title={YOLOv10: Real-Time End-to-End Object Detection},
author={Wang, Ao and Chen, Hui and Liu, Lihao and Chen, Kai and Lin, Zijia and Han, Jungong and Ding, Guiguang},
journal={arXiv preprint arXiv:2405.14458},
year={2024}
}
``` |