--- library_name: transformers license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer model-index: - name: whisper-small-sc results: [] datasets: - janaab/supreme-court-speech language: - en metrics: - wer pipeline_tag: automatic-speech-recognition --- # whisper-small-sc This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on [janaab/supreme-court-speech](https://huggingface.co/janaab/supreme-court-speech) dataset. It achieves the following results on the evaluation set: - eval_loss: 0.3354 - eval_wer_ortho: 11.0780 - eval_wer: 10.5653 - eval_runtime: 1059.0881 - eval_samples_per_second: 4.216 - eval_steps_per_second: 0.264 - epoch: 6.9337 - step: 2250 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 50 - training_steps: 4000 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1