update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- common_voice_13_0
|
7 |
+
metrics:
|
8 |
+
- wer
|
9 |
+
model-index:
|
10 |
+
- name: whisper-small-ne-NP
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Automatic Speech Recognition
|
14 |
+
type: automatic-speech-recognition
|
15 |
+
dataset:
|
16 |
+
name: common_voice_13_0
|
17 |
+
type: common_voice_13_0
|
18 |
+
config: ne-NP
|
19 |
+
split: test
|
20 |
+
args: ne-NP
|
21 |
+
metrics:
|
22 |
+
- name: Wer
|
23 |
+
type: wer
|
24 |
+
value: 57.38758029978587
|
25 |
+
---
|
26 |
+
|
27 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
28 |
+
should probably proofread and complete it, then remove this comment. -->
|
29 |
+
|
30 |
+
# whisper-small-ne-NP
|
31 |
+
|
32 |
+
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the common_voice_13_0 dataset.
|
33 |
+
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.6005
|
35 |
+
- Wer: 57.3876
|
36 |
+
|
37 |
+
## Model description
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Intended uses & limitations
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Training and evaluation data
|
46 |
+
|
47 |
+
More information needed
|
48 |
+
|
49 |
+
## Training procedure
|
50 |
+
|
51 |
+
### Training hyperparameters
|
52 |
+
|
53 |
+
The following hyperparameters were used during training:
|
54 |
+
- learning_rate: 1e-05
|
55 |
+
- train_batch_size: 4
|
56 |
+
- eval_batch_size: 8
|
57 |
+
- seed: 42
|
58 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
59 |
+
- lr_scheduler_type: linear
|
60 |
+
- lr_scheduler_warmup_steps: 500
|
61 |
+
- training_steps: 4000
|
62 |
+
- mixed_precision_training: Native AMP
|
63 |
+
|
64 |
+
### Training results
|
65 |
+
|
66 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
67 |
+
|:-------------:|:-----:|:----:|:---------------:|:-------:|
|
68 |
+
| 0.9935 | 0.17 | 100 | 1.3460 | 91.4347 |
|
69 |
+
| 0.6624 | 0.35 | 200 | 1.0307 | 85.6531 |
|
70 |
+
| 0.5002 | 0.52 | 300 | 0.8406 | 77.5161 |
|
71 |
+
| 0.4426 | 0.7 | 400 | 0.7038 | 76.2313 |
|
72 |
+
| 0.3063 | 0.87 | 500 | 0.5308 | 71.5203 |
|
73 |
+
| 0.1949 | 1.05 | 600 | 0.5200 | 66.1670 |
|
74 |
+
| 0.1974 | 1.22 | 700 | 0.5140 | 65.0964 |
|
75 |
+
| 0.1734 | 1.4 | 800 | 0.4423 | 67.6660 |
|
76 |
+
| 0.1619 | 1.57 | 900 | 0.4705 | 62.0985 |
|
77 |
+
| 0.1697 | 1.75 | 1000 | 0.4676 | 67.0236 |
|
78 |
+
| 0.1536 | 1.92 | 1100 | 0.4441 | 62.7409 |
|
79 |
+
| 0.0722 | 2.1 | 1200 | 0.4492 | 58.0300 |
|
80 |
+
| 0.0674 | 2.27 | 1300 | 0.4597 | 59.9572 |
|
81 |
+
| 0.0766 | 2.45 | 1400 | 0.4720 | 62.3126 |
|
82 |
+
| 0.0732 | 2.62 | 1500 | 0.4720 | 60.5996 |
|
83 |
+
| 0.0737 | 2.8 | 1600 | 0.4704 | 61.0278 |
|
84 |
+
| 0.0833 | 2.97 | 1700 | 0.4711 | 59.7430 |
|
85 |
+
| 0.0421 | 3.15 | 1800 | 0.5040 | 60.5996 |
|
86 |
+
| 0.0444 | 3.32 | 1900 | 0.5096 | 62.5268 |
|
87 |
+
| 0.0343 | 3.5 | 2000 | 0.5276 | 62.5268 |
|
88 |
+
| 0.0347 | 3.67 | 2100 | 0.5068 | 57.3876 |
|
89 |
+
| 0.0326 | 3.85 | 2200 | 0.5143 | 59.3148 |
|
90 |
+
| 0.0219 | 4.02 | 2300 | 0.5225 | 59.3148 |
|
91 |
+
| 0.0129 | 4.2 | 2400 | 0.5353 | 59.1006 |
|
92 |
+
| 0.0159 | 4.37 | 2500 | 0.5639 | 56.9593 |
|
93 |
+
| 0.0168 | 4.55 | 2600 | 0.5303 | 55.8887 |
|
94 |
+
| 0.0131 | 4.72 | 2700 | 0.5455 | 58.6724 |
|
95 |
+
| 0.0122 | 4.9 | 2800 | 0.5548 | 56.5310 |
|
96 |
+
| 0.0035 | 5.07 | 2900 | 0.5661 | 56.7452 |
|
97 |
+
| 0.0027 | 5.24 | 3000 | 0.5789 | 57.6017 |
|
98 |
+
| 0.0034 | 5.42 | 3100 | 0.5887 | 59.1006 |
|
99 |
+
| 0.0047 | 5.59 | 3200 | 0.5853 | 59.9572 |
|
100 |
+
| 0.0054 | 5.77 | 3300 | 0.5912 | 58.4582 |
|
101 |
+
| 0.0042 | 5.94 | 3400 | 0.5862 | 59.3148 |
|
102 |
+
| 0.0013 | 6.12 | 3500 | 0.5935 | 56.7452 |
|
103 |
+
| 0.001 | 6.29 | 3600 | 0.5991 | 57.3876 |
|
104 |
+
| 0.0008 | 6.47 | 3700 | 0.6012 | 57.6017 |
|
105 |
+
| 0.0014 | 6.64 | 3800 | 0.6002 | 57.8158 |
|
106 |
+
| 0.001 | 6.82 | 3900 | 0.6006 | 57.8158 |
|
107 |
+
| 0.0013 | 6.99 | 4000 | 0.6005 | 57.3876 |
|
108 |
+
|
109 |
+
|
110 |
+
### Framework versions
|
111 |
+
|
112 |
+
- Transformers 4.28.1
|
113 |
+
- Pytorch 2.0.0
|
114 |
+
- Datasets 2.11.0
|
115 |
+
- Tokenizers 0.13.3
|