File size: 1,509 Bytes
acb0c84 26b7b92 acb0c84 26b7b92 acb0c84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
---
base_model: CompVis/stable-diffusion-v1-4
library_name: diffusers
license: creativeml-openrail-m
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- diffusers-training
inference: true
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# Text-to-image finetuning - jangmin/foodai-pipeline-ko
This pipeline was finetuned from **CompVis/stable-diffusion-v1-4** with replacement of text encoder **Bingsu/my-korean-stable-diffusion-v1-5** on the **AI-HUB: 건강관리를 위한 음식 이미지** dataset.
## Pipeline usage
You can use the pipeline like so:
```python
from diffusers import StableDiffusionPipeline
import torch
# Set device
device = (
"mps"
if torch.backends.mps.is_available()
else "cuda"
if torch.cuda.is_available()
else "cpu"
)
torch_dtype = torch.float16 if device == "cuda" else torch.float32
pipeline = StableDiffusionPipeline.from_pretrained("jangmin/foodai-pipeline-ko", torch_dtype=torch_dtype)
pipeline.to(device)
prompt = "짜장면, 정면에서 본 사진, 그릇에 담긴"
image = pipeline(prompt, guidance_scale=8, num_inference_steps=35).images[0]
image
```
## Training info
These are the key hyperparameters used during training:
* Epochs: 1
* Learning rate: 1e-05
* Batch size: 8
* Gradient accumulation steps: 4
* Image resolution:512
* Mixed-precision: bf16
|