--- base_model: CompVis/stable-diffusion-v1-4 library_name: diffusers license: creativeml-openrail-m tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - diffusers-training inference: true --- # Text-to-image finetuning - jangmin/foodai-pipeline-ko This pipeline was finetuned from **CompVis/stable-diffusion-v1-4** with replacement of text encoder **Bingsu/my-korean-stable-diffusion-v1-5** on the **AI-HUB: 건강관리를 위한 음식 이미지** dataset. ## Pipeline usage You can use the pipeline like so: ```python from diffusers import StableDiffusionPipeline import torch # Set device device = ( "mps" if torch.backends.mps.is_available() else "cuda" if torch.cuda.is_available() else "cpu" ) torch_dtype = torch.float16 if device == "cuda" else torch.float32 pipeline = StableDiffusionPipeline.from_pretrained("jangmin/foodai-pipeline-ko", torch_dtype=torch_dtype) pipeline.to(device) prompt = "짜장면, 정면에서 본 사진, 그릇에 담긴" image = pipeline(prompt, guidance_scale=8, num_inference_steps=35).images[0] image ``` ## Training info These are the key hyperparameters used during training: * Epochs: 1 * Learning rate: 1e-05 * Batch size: 8 * Gradient accumulation steps: 4 * Image resolution:512 * Mixed-precision: bf16