---
base_model: BAAI/bge-m3
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: W elementach regału brakuje kilku otworów montażowych, uniemożliwiających
prawidłowe złożenie.
- text: Półki regału Biblioteka są zbyt wąskie.
- text: Łóżko drewniane posiada wadę konstrukcji.
- text: Noga krzesła drewnianego Country jest złamana.
- text: Konstrukcja łóżka piętrowego jest wadliwa, elementy nie pasują do siebie.
inference: true
model-index:
- name: SetFit with BAAI/bge-m3
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.8632478632478633
name: Accuracy
---
# SetFit with BAAI/bge-m3
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 8192 tokens
- **Number of Classes:** 4 classes
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:---------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| błędny montaż |
- 'Pojemnik pod łóżkiem jest źle zamontowany i nie otwiera się.'
- 'Nogi komody nowoczesnej są źle przymocowane i komoda jest niestabilna.'
- 'Oświetlenie w witrynie z oświetleniem jest źle podłączone i nie działa.'
|
| wady fabryczne | - 'Front szafki RTV jest uszkodzony, posiada wgniecenie i rysę.'
- 'Tapicerka krzesła jest rozdarcia.'
- 'Blat biurka narożnego ma pęknięcie, widoczne gołym okiem.'
|
| niezgodność towaru z zamówieniem | - 'Materiał szafy Prosty jest inny niż ten, który został zamówiony.'
- 'Regał narożny ma inne wymiary niż te, które zostały podane w zamówieniu.'
- 'Zamówiony fotel bujany miał zawierać poduszkę, której nie ma w przesyłce. Potwierdzenie zamówienia wskazuje na dołączoną poduszkę.'
|
| uszkodzenia | - 'Szyba stolika kawowego Minimal jest pęknięta.'
- 'Prowadnice szuflad w szafie wnękowej Max są uszkodzone.'
- 'Drzwiczki szafy na buty Shoes są uszkodzone.'
|
## Evaluation
### Metrics
| Label | Accuracy |
|:--------|:---------|
| **all** | 0.8632 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("janmariakowalski/LiderzyAI-homestyle-reklamacje")
# Run inference
preds = model("Półki regału Biblioteka są zbyt wąskie.")
```
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count | 4 | 10.0 | 20 |
| Label | Training Sample Count |
|:---------------------------------|:----------------------|
| uszkodzenia | 8 |
| wady fabryczne | 8 |
| niezgodność towaru z zamówieniem | 8 |
| błędny montaż | 8 |
### Training Hyperparameters
- batch_size: (32, 32)
- num_epochs: (10, 10)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0417 | 1 | 0.1938 | - |
| 4.1667 | 100 | 0.0392 | - |
| 8.3333 | 200 | 0.0011 | - |
### Framework Versions
- Python: 3.11.0
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.44.2
- PyTorch: 2.4.1
- Datasets: 2.19.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```