--- license: mit base_model: roberta-large tags: - generated_from_trainer datasets: - open_question_type metrics: - f1 model-index: - name: roberta-large-question-classifier results: - task: name: Text Classification type: text-classification dataset: name: open_question_type type: open_question_type config: default split: validation args: default metrics: - name: F1 type: f1 value: 0.7954091951908298 --- # roberta-large-question-classifier This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the open_question_type dataset. It achieves the following results on the evaluation set: - Loss: 1.9002 - F1: 0.7954 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 512 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.9467 | 1.0 | 233 | 1.3099 | 0.4050 | | 0.6381 | 2.0 | 466 | 0.5586 | 0.7785 | | 0.628 | 3.0 | 699 | 0.6419 | 0.7831 | | 0.4487 | 4.0 | 932 | 0.5770 | 0.8094 | | 0.3319 | 5.0 | 1165 | 0.7713 | 0.7953 | | 0.2095 | 6.0 | 1398 | 0.8799 | 0.8018 | | 0.1355 | 7.0 | 1631 | 1.0646 | 0.7961 | | 0.0956 | 8.0 | 1864 | 1.2175 | 0.7999 | | 0.0687 | 9.0 | 2097 | 1.3647 | 0.7892 | | 0.0371 | 10.0 | 2330 | 1.3809 | 0.7987 | | 0.0303 | 11.0 | 2563 | 1.3591 | 0.8123 | | 0.0263 | 12.0 | 2796 | 1.5317 | 0.8100 | | 0.0144 | 13.0 | 3029 | 1.5726 | 0.7959 | | 0.0436 | 14.0 | 3262 | 1.6160 | 0.7988 | | 0.0048 | 15.0 | 3495 | 1.6826 | 0.7957 | | 0.0001 | 16.0 | 3728 | 1.6913 | 0.7957 | | 0.0001 | 17.0 | 3961 | 1.7076 | 0.7995 | | 0.0034 | 18.0 | 4194 | 1.8018 | 0.7960 | | 0.0228 | 19.0 | 4427 | 1.7457 | 0.7916 | | 0.0083 | 20.0 | 4660 | 1.9279 | 0.7869 | | 0.0001 | 21.0 | 4893 | 1.8367 | 0.7915 | | 0.0003 | 22.0 | 5126 | 1.8620 | 0.7842 | | 0.0002 | 23.0 | 5359 | 1.9192 | 0.7828 | | 0.0 | 24.0 | 5592 | 1.9081 | 0.7927 | | 0.0003 | 25.0 | 5825 | 1.9822 | 0.7813 | | 0.0059 | 26.0 | 6058 | 1.8737 | 0.7954 | | 0.0 | 27.0 | 6291 | 1.8793 | 0.7929 | | 0.0 | 28.0 | 6524 | 1.8905 | 0.7940 | | 0.0 | 29.0 | 6757 | 1.8971 | 0.7940 | | 0.0002 | 30.0 | 6990 | 1.9002 | 0.7954 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.1.0+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3