{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f867652f880>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679340473631346289, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAH2dBD744pG/SDVhP+wenr90hUk+9UP6PjuvA78UvpW/hrDuPzI4ljw2F5M/ximHvitZx7+NKDU8nKlsvUS/tb5V46Y/wjEFvmlhBD/5MlI8Dpn0PjiCVb+ddvc/utu5vd8ETb89aTU/Sw6QPtilJT+3N4O+me6bvQ3dBz/2x3I/CUB6v/yJAT1SwAk/KAL2O5QOEL8TKgRAIiCsP62fCj8K9XW/ccHUvwH72L3eEb2/bR8bvYIzBUBWrwo/rKuFvvYv770ccyRAUbw2v3qo+z4+1J8/4KC0v0sOkD430cW/0z1nv1ZWMD9uK2S+Ovp0PgxjYT9gm8U+wm9lP9eLhD+5LY0/PQoSQH51Oj+aR+Q+NVqqvwyjvD9OrHu/2xDrv8MP6T65YwRAWpEEP4qAXD3/u7U/nU2PPs9QOr+lFMo+PtSfP+CgtL9LDpA+N9HFvzoFuL6VyDW+UeoXP/uPnD/BmaM+BS4HP6ntBT1jo569IwKuvi0SC0AarDg/jEqMP0xUvL/FrFA/oa/ovh76B8DBxgc/J5p3P3j/Az9Cedu84Ha2Py8Qe73Vwyu/aHHGPz7Unz/goLS/Sw6QPjfRxb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABMJKk1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAh5jdvAAAAADqsPq/AAAAAHiO+r0AAAAAbSXwPwAAAAAXOGI9AAAAAEtI6j8AAAAAyKi8vQAAAAA/6ee/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlAXDNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgISxCTwAAAAAUtz9vwAAAAA8TVY8AAAAAOsEAUAAAAAAsUAWvQAAAACpFus/AAAAAPp+xb0AAAAAJ2v+vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADDYHbUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIABv1+9AAAAAM6K3b8AAAAAT0GJvAAAAABaHv0/AAAAAOaE8jwAAAAAh+PZPwAAAAA3b7k9AAAAACzS+b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADGnA83AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA7qRDuwAAAAACHuO/AAAAAIOF6z0AAAAAHzDjPwAAAACoyw8+AAAAACIu3D8AAAAAsljyvQAAAABh2eG/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJoTXfEXLvGMAWyUTegDjAF0lEdAqbKAybhFVnV9lChoBkdAmiybiVB2OmgHTegDaAhHQKmzOvHtF8Z1fZQoaAZHQJneeIgvDgtoB03oA2gIR0CptzlBY3efdX2UKGgGR0CYgF+OfdylaAdN6ANoCEdAqb07tNSIg3V9lChoBkdAl6UNE1EVnGgHTegDaAhHQKm+nxvvSc91fZQoaAZHQJkznnIQvpRoB03oA2gIR0Cpv1hmf5DadX2UKGgGR0CZ1zT1CgK4aAdN6ANoCEdAqcOgNXo1UHV9lChoBkdAlVX/q5byH2gHTegDaAhHQKnMuA4n4PB1fZQoaAZHQJoyuMrEtNBoB03oA2gIR0Cpzj90JWvKdX2UKGgGR0CZG0zO5avBaAdN6ANoCEdAqc72St/4I3V9lChoBkdAmXkq4MF2V2gHTegDaAhHQKnS6eEIw/R1fZQoaAZHQJkDYyRB/qhoB03oA2gIR0Cp2M7QswtbdX2UKGgGR0CZnu7tRekYaAdN6ANoCEdAqdo/lbNbDHV9lChoBkdAmwYZ0wJw9GgHTegDaAhHQKna+cWj4591fZQoaAZHQJpkHA31jAloB03oA2gIR0Cp3vwbVBlddX2UKGgGR0CZDlrELpiaaAdN6ANoCEdAqebuq94/vHV9lChoBkdAmBUXtOVPe2gHTegDaAhHQKnpINXHR1J1fZQoaAZHQJgynnoxHoZoB03oA2gIR0Cp6jtyPuG9dX2UKGgGR0CZ1JapPykLaAdN6ANoCEdAqe6Ry8zyjHV9lChoBkdAmYV2xMWXTmgHTegDaAhHQKn0bbyH2yt1fZQoaAZHQJdWFUxVQyhoB03oA2gIR0Cp9dZJsfq5dX2UKGgGR0B6BsDfWMCLaAdN6ANoCEdAqfaVWMju8nV9lChoBkdAeg+98qnWKGgHTegDaAhHQKn6opVjqfR1fZQoaAZHQIIyB06o2n9oB03oA2gIR0CqAX4YR/VidX2UKGgGR0CAJ146fapQaAdN6ANoCEdAqgORbILgGnV9lChoBkdAmEpuIdlunGgHTegDaAhHQKoEqvsZ5zJ1fZQoaAZHQJa18y2x6fJoB03oA2gIR0CqClbFKkEcdX2UKGgGR0CUuMQT238XaAdN6ANoCEdAqhBYXXRPXXV9lChoBkdAf55wr1/UfGgHTegDaAhHQKoRyBreqJd1fZQoaAZHQJWGp/ZuhsZoB03oA2gIR0CqEoaLn9vTdX2UKGgGR0CWTwruYx+KaAdN6ANoCEdAqhaJOvdM03V9lChoBkdAkf4KqjrRjWgHTegDaAhHQKociw/PgNx1fZQoaAZHQJYm9xeb/fhoB03oA2gIR0CqHi3A2ycDdX2UKGgGR0CV6KEjPfKqaAdN6ANoCEdAqh87VUdaMnV9lChoBkdAf+ma8Yht+GgHTegDaAhHQKolcVFhG6R1fZQoaAZHQJFHgnuy/sVoB03oA2gIR0CqLGjeKsMidX2UKGgGR0CS95POIInjaAdN6ANoCEdAqi3eS4e9z3V9lChoBkdAfl0uAqd6LWgHTegDaAhHQKoumWVu76J1fZQoaAZHQJVo69tdiUhoB03oA2gIR0CqMqd30PH1dX2UKGgGR0CV8GsfJV81aAdN6ANoCEdAqjiyaCtihHV9lChoBkdAggOBKDkELmgHTegDaAhHQKo6HL+PzWh1fZQoaAZHQJX/tsenyd5oB03oA2gIR0CqOtQdKdxydX2UKGgGR0CHRxfzBhx6aAdN6ANoCEdAqj/3JtBOYnV9lChoBkdAllOJr+Hae2gHTegDaAhHQKpIQO6NEPV1fZQoaAZHQJPuVINEw35oB03oA2gIR0CqSag/s3Q2dX2UKGgGR0CWV02OAAhjaAdN6ANoCEdAqkpX8fmtAHV9lChoBkdAl0XNH2AXmGgHTegDaAhHQKpOX+H8CPp1fZQoaAZHQJYxNn8KohpoB03oA2gIR0CqVFjdP+GXdX2UKGgGR0B8XblJYkmhaAdN6ANoCEdAqlXGOQyRCHV9lChoBkdAl5A2QfZElWgHTegDaAhHQKpWfokAxSJ1fZQoaAZHQH1tJkkKNQ1oB03oA2gIR0CqWpSAxzq9dX2UKGgGR0CXnvdBSk0raAdN6ANoCEdAqmOIgzP8h3V9lChoBkdAldEDfvWpZWgHTegDaAhHQKplX8MNMGp1fZQoaAZHQJhDDeGfwqloB03oA2gIR0CqZhPcBU70dX2UKGgGR0CXad9mHxjKaAdN6ANoCEdAqmn3crRSg3V9lChoBkdAmQj4gFHJ92gHTegDaAhHQKpv0dBBzFN1fZQoaAZHQJl0TNSqEOBoB03oA2gIR0CqcSz8pCrtdX2UKGgGR0CYnIdGAkLQaAdN6ANoCEdAqnHhjhDPW3V9lChoBkdAmFqiuEEkjWgHTegDaAhHQKp1vqk/KQt1fZQoaAZHQJQ8zah6By1oB03oA2gIR0CqfTpvP1L8dX2UKGgGR0CY1dYr8R+SaAdN6ANoCEdAqn9m9OARTXV9lChoBkdAl+odx2jfvWgHTegDaAhHQKqAfthNM491fZQoaAZHQJajrKgZjx1oB03oA2gIR0CqhVg/LTx5dX2UKGgGR0CVlDLAHmihaAdN6ANoCEdAqosq5Zr57HV9lChoBkdAl3VY82aUimgHTegDaAhHQKqMkNYKYzB1fZQoaAZHQJYJgQ176YVoB03oA2gIR0CqjUXsPatcdX2UKGgGR0CXKOPtD2J0aAdN6ANoCEdAqpE5vtMPBnV9lChoBkdAlaQwGOdXk2gHTegDaAhHQKqXFaUzKtB1fZQoaAZHQJeDrM1TBIpoB03oA2gIR0CqmSH3lCC0dX2UKGgGR0CYN2NuLrHEaAdN6ANoCEdAqpol1ZDArXV9lChoBkdAlXAvTodMkGgHTegDaAhHQKqgH6JqIrR1fZQoaAZHQJcRd+/gzgxoB03oA2gIR0CqpnVUVBUrdX2UKGgGR0CWGE+2VmjCaAdN6ANoCEdAqqfXGIbfg3V9lChoBkdAlyrbOzIFNmgHTegDaAhHQKqoj3gUDdR1fZQoaAZHQJcQn/wRXfZoB03oA2gIR0CqrHBmGucMdX2UKGgGR0CU3jWY4Qz2aAdN6ANoCEdAqrJhvHcUNHV9lChoBkdAlLKi2c8Tz2gHTegDaAhHQKqzzj6vaDh1fZQoaAZHQJYHRp1zQu5oB03oA2gIR0CqtIudoWYXdX2UKGgGR0CU6qePq9oOaAdN6ANoCEdAqrorFjurqHV9lChoBkdAlPrOueSSvGgHTegDaAhHQKrB8UqQRwt1fZQoaAZHQJM2mJiy6c1oB03oA2gIR0Cqw1MZ5zHTdX2UKGgGR0CWIYYkmhM8aAdN6ANoCEdAqsQUMI/qxHV9lChoBkdAlZ/NSydFv2gHTegDaAhHQKrIBCN0eU91fZQoaAZHQJYvOLpA2Q5oB03oA2gIR0CqzhBomG/OdX2UKGgGR0CXWXlUp/gBaAdN6ANoCEdAqs+Ib2lEZ3V9lChoBkdAlijlZTyau2gHTegDaAhHQKrQReN1hb51fZQoaAZHQJVxW06YE4hoB03oA2gIR0Cq1ILqt5lfdX2UKGgGR0CTZeKb8WKuaAdN6ANoCEdAqt2TJQtSRHV9lChoBkdAlwIIgvDgqGgHTegDaAhHQKre8hYeT3Z1fZQoaAZHQJbNWBQN0/5oB03oA2gIR0Cq37DQZ4wAdX2UKGgGR0CYB54O+ZgHaAdN6ANoCEdAquOdzdUKiXV9lChoBkdAlaJNrj5sTGgHTegDaAhHQKrpmi/O+qR1fZQoaAZHQH7VjINmUW5oB03oA2gIR0Cq6vel0o0AdX2UKGgGR0CYz1Jz1bqyaAdN6ANoCEdAquuq5TZQHnV9lChoBkdAmKg/n4fwJGgHTegDaAhHQKrvhygf2bp1fZQoaAZHQJf5aki2UjdoB03oA2gIR0Cq93fxUedTdX2UKGgGR0CXNYg/TspoaAdN6ANoCEdAqvmkm2LHdXV9lChoBkdAlyMxBJI1+GgHTegDaAhHQKr6w5oXbdt1fZQoaAZHQJdsqGTLW7RoB03oA2gIR0Cq/x0w8GLUdX2UKGgGR0CYb0zQu27WaAdN6ANoCEdAqwT5trKvFHVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}