File size: 2,458 Bytes
8311637
 
 
 
d19b7e5
5c3d006
 
 
8311637
96c7f05
8311637
689d647
 
ac0c36e
689d647
431cdce
 
 
689d647
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70f8801
431cdce
689d647
d6fecf3
 
 
 
 
689d647
 
 
 
 
 
 
cec6b93
 
689d647
ac0c36e
689d647
 
 
5c3d006
689d647
 
92ca95d
 
 
 
 
 
 
 
adc1f0e
 
92ca95d
 
2e4874a
92ca95d
 
d7b1dc7
92ca95d
 
3b084d2
 
 
689d647
ee620e4
8244a2e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
---
base_model:
- black-forest-labs/FLUX.1-dev
library_name: diffusers
license: cc-by-nc-4.0
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
pipeline_tag: image-to-image
tags:
- ControlNet
---
# ⚡ Flux.1-dev: Depth ControlNet ⚡

This is [Flux.1-dev](https://huggingface.co/black-forest-labs/FLUX.1-dev) ControlNet for Depth map developped by Jasper research team.

<p align="center">
   <img style="width:700px;" src="examples/showcase.jpg">
</p>

# How to use
This model can be used directly with the `diffusers` library

```python
import torch
from diffusers.utils import load_image
from diffusers import FluxControlNetModel
from diffusers.pipelines import FluxControlNetPipeline

# Load pipeline
controlnet = FluxControlNetModel.from_pretrained(
  "jasperai/Flux.1-dev-Controlnet-Depth",
  torch_dtype=torch.bfloat16
)
pipe = FluxControlNetPipeline.from_pretrained(
  "black-forest-labs/FLUX.1-dev",
  controlnet=controlnet,
  torch_dtype=torch.bfloat16
)
pipe.to("cuda")

# Load a control image
control_image = load_image(
  "https://huggingface.co/jasperai/Flux.1-dev-Controlnet-Depth/resolve/main/examples/depth.jpg"
)

prompt = "a statue of a gnome in a field of purple tulips"

image = pipe(
    prompt, 
    control_image=control_image,
    controlnet_conditioning_scale=0.6,
    num_inference_steps=28, 
    guidance_scale=3.5,
    height=control_image.size[1],
    width=control_image.size[0]
).images[0]
image
```

<p align="center">
   <img style="width:500px;" src="examples/output.jpg">
</p>

💡 Note: You can compute the conditioning map using for instance the `MidasDetector` from the `controlnet_aux` library

```python
from controlnet_aux import MidasDetector
from diffusers.utils import load_image 

midas = MidasDetector.from_pretrained("lllyasviel/Annotators")

midas.to("cuda")

# Load an image
im = load_image(
  "https://huggingface.co/jasperai/Flux.1-dev-Controlnet-Depth/resolve/main/examples/output.jpg"
)

depth = midas(im)
```

# Training
This model was trained with depth maps computed with [Clipdrop's depth estimator model](https://clipdrop.co/apis/docs/portrait-depth-estimation) as well as open-souce depth estimation models such as Midas or Leres.

# Licence
This model is released under the the Creative Commons BY-NC license.
Note that if used with Flux.1-dev, the license under the Flux.1-dev model also applies to this model.