clementchadebec
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,70 @@
|
|
1 |
-
---
|
2 |
-
license: cc-by-nc-4.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-4.0
|
3 |
+
library_name: diffusers
|
4 |
+
base_model: PixArt-alpha/PixArt-XL-2-1024-MS
|
5 |
+
tags:
|
6 |
+
- lora
|
7 |
+
- text-to-image
|
8 |
+
inference: False
|
9 |
+
---
|
10 |
+
# ⚡ FlashDiffusion: FlashPixart ⚡
|
11 |
+
|
12 |
+
|
13 |
+
Flash Diffusion is a diffusion distillation method proposed in [ADD ARXIV]() *by Clément Chadebec, Onur Tasar and Benjamin Aubin.*
|
14 |
+
This model is a **26.4M** LoRA distilled version of Pixart-α model that is able to generate 1024x1024 images in **4 steps**.
|
15 |
+
|
16 |
+
|
17 |
+
<p align="center">
|
18 |
+
<img style="width:700px;" src="images/hf_grid.png">
|
19 |
+
</p>
|
20 |
+
|
21 |
+
# How to use?
|
22 |
+
|
23 |
+
The model can be used using the `StableDiffusionPipeline` from `diffusers` library directly. It can allow reducing the number of required sampling steps to **2-4 steps**.
|
24 |
+
|
25 |
+
```python
|
26 |
+
import torch
|
27 |
+
from diffusers import PixArtAlphaPipeline, Transformer2DModel, LCMScheduler
|
28 |
+
from peft import PeftModel
|
29 |
+
|
30 |
+
# Load LoRA
|
31 |
+
transformer = Transformer2DModel.from_pretrained(
|
32 |
+
"PixArt-alpha/PixArt-XL-2-1024-MS",
|
33 |
+
subfolder="transformer",
|
34 |
+
torch_dtype=torch.float16
|
35 |
+
)
|
36 |
+
transformer = PeftModel.from_pretrained(
|
37 |
+
transformer,
|
38 |
+
"jasperai/flash-pixart"
|
39 |
+
)
|
40 |
+
|
41 |
+
# Pipeline
|
42 |
+
pipe = PixArtAlphaPipeline.from_pretrained(
|
43 |
+
"PixArt-alpha/PixArt-XL-2-1024-MS",
|
44 |
+
transformer=transformer,
|
45 |
+
torch_dtype=torch.float16
|
46 |
+
)
|
47 |
+
|
48 |
+
# Scheduler
|
49 |
+
pipe.scheduler = LCMScheduler.from_pretrained(
|
50 |
+
"PixArt-alpha/PixArt-XL-2-1024-MS",
|
51 |
+
subfolder="scheduler",
|
52 |
+
timestep_spacing="trailing",
|
53 |
+
)
|
54 |
+
|
55 |
+
pipe.to("cuda")
|
56 |
+
|
57 |
+
prompt = "A raccoon reading a book in a lush forest."
|
58 |
+
|
59 |
+
image = pipe(prompt, num_inference_steps=4, guidance_scale=0).images[0]
|
60 |
+
```
|
61 |
+
<p align="center">
|
62 |
+
<img style="width:400px;" src="images/raccoon.png">
|
63 |
+
</p>
|
64 |
+
|
65 |
+
# Training Details
|
66 |
+
The model was trained for 40k iterations on 4 H100 GPUs. Please refer to the [paper]() for further parameters details.
|
67 |
+
|
68 |
+
|
69 |
+
## License
|
70 |
+
This model is released under the the Creative Commons BY-NC license.
|