clementchadebec commited on
Commit
f7fb56c
·
verified ·
1 Parent(s): 8bacc7c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +63 -0
README.md CHANGED
@@ -98,6 +98,69 @@ image = pipe(
98
  <img style="width:400px;" src="images/corgi.jpg">
99
  </p>
100
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
101
  # Training Details
102
  The model was trained for 20k iterations on 4 H100 GPUs (representing approximately a total of 176 GPU hours of training). Please refer to the [paper](http://arxiv.org/abs/2406.02347) for further parameters details.
103
 
 
98
  <img style="width:400px;" src="images/corgi.jpg">
99
  </p>
100
 
101
+ # Combining Flash Diffusion with Existing ControlNets 🎨
102
+
103
+ FlashSDXL can also be combined with existing ControlNets to unlock few steps generation in a **training free** manner. It can be integrated straight to Hugging Face pipelines. See an example below.
104
+
105
+ ```python
106
+ import torch
107
+ import cv2
108
+ import numpy as np
109
+ from PIL import Image
110
+
111
+ from diffusers import StableDiffusionXLControlNetPipeline, ControlNetModel, LCMScheduler
112
+ from diffusers.utils import load_image, make_image_grid
113
+
114
+ adapter_id = "jasperai/flash-sdxl"
115
+
116
+ image = load_image(
117
+ "https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png"
118
+ ).resize((1024, 1024))
119
+
120
+ image = np.array(image)
121
+
122
+ image = cv2.Canny(image, 100, 200)
123
+ image = image[:, :, None].repeat(3, 2)
124
+ canny_image = Image.fromarray(image)
125
+
126
+ # Load ControlNet
127
+ controlnet = ControlNetModel.from_pretrained(
128
+ "diffusers/controlnet-canny-sdxl-1.0",
129
+ torch_dtype=torch.float16,
130
+ variant="fp16"
131
+ )
132
+ pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
133
+ "stabilityai/stable-diffusion-xl-base-1.0",
134
+ controlnet=controlnet,
135
+ torch_dtype=torch.float16,
136
+ safety_checker=None,
137
+ variant="fp16"
138
+ ).to("cuda")
139
+
140
+ # Set scheduler
141
+ pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
142
+
143
+ # Load LoRA
144
+ pipe.load_lora_weights("jasperai/flash-sdxl")
145
+ pipe.fuse_lora()
146
+
147
+ generator = torch.manual_seed(0)
148
+ image = pipe(
149
+ "picture of the mona lisa",
150
+ image=canny_image,
151
+ num_inference_steps=4,
152
+ guidance_scale=0,
153
+ controlnet_conditioning_scale=0.5,
154
+ cross_attention_kwargs={"scale": 1},
155
+ generator=generator,
156
+ ).images[0]
157
+ make_image_grid([canny_image, image], rows=1, cols=2)
158
+ ```
159
+ <p align="center">
160
+ <img style="width:400px;" src="images/controlnet.jpg">
161
+ </p>
162
+
163
+
164
  # Training Details
165
  The model was trained for 20k iterations on 4 H100 GPUs (representing approximately a total of 176 GPU hours of training). Please refer to the [paper](http://arxiv.org/abs/2406.02347) for further parameters details.
166