--- tags: - text-to-image - stable-diffusion - lora - diffusers - template:sd-lora base_model: stabilityai/stable-diffusion-xl-base-1.0 license: cc-by-nc-nd-4.0 --- # ⚡ FlashDiffusion: FlashSDXL ⚡ Flash Diffusion is a diffusion distillation method proposed in [ADD ARXIV]() *by Clément Chadebec, Onur Tasar and Benjamin Aubin.* This model is a **26.4M** LoRA distilled version of [SDXL](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) model that is able to generate images in **4 steps**. The main purpose of this model is to reproduce the main results of the paper.
# How to use? The model can be used using the `StableDiffusionPipeline` from `diffusers` library directly. It can allow reducing the number of required sampling steps to **2-4 steps**. ```python from diffusers import DiffusionPipeline, LCMScheduler adapter_id = "jasperai/flash-sd" pipe = DiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", use_safetensors=True, ) pipe.scheduler = LCMScheduler.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", subfolder="scheduler", timestep_spacing="trailing", ) pipe.to("cuda") # Fuse and load LoRA weights pipe.load_lora_weights(adapter_id) pipe.fuse_lora() prompt = "A raccoon reading a book in a lush forest." image = pipe(prompt, num_inference_steps=4, guidance_scale=0).images[0] ```
# Training Details ## License This model is released under the the Creative Commons BY-NC license.