--- license: mit base_model: microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext tags: - generated_from_trainer metrics: - precision - recall - accuracy - f1 model-index: - name: pretoxtm-sentence-classifier results: [] --- # pretoxtm-sentence-classifier This model is a fine-tuned version of [microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0802 - Precision: 0.9778 - Recall: 0.9801 - Accuracy: 0.9795 - F1: 0.9789 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.755382954990098e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:--------:|:------:| | No log | 1.0 | 257 | 0.1410 | 0.9593 | 0.9684 | 0.9636 | 0.9628 | | 0.1997 | 2.0 | 514 | 0.0802 | 0.9778 | 0.9801 | 0.9795 | 0.9789 | | 0.1997 | 3.0 | 771 | 0.1103 | 0.9824 | 0.9848 | 0.9841 | 0.9836 | | 0.0514 | 4.0 | 1028 | 0.1139 | 0.9798 | 0.9829 | 0.9818 | 0.9813 | | 0.0514 | 5.0 | 1285 | 0.1208 | 0.9804 | 0.9821 | 0.9818 | 0.9812 | ### Framework versions - Transformers 4.39.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2