from pathlib import Path from time import sleep from time import time from fastai.vision.all import * from fastai.vision.widgets import * from fastbook import * from fastcore.parallel import * from fastdownload import download_url from google.colab import drive import gradio as gr from huggingface_hub import from_pretrained_fastai, notebook_login, push_to_hub_fastai import timm from torchvision.models import resnet18 import os learn = load_learner('model.pkl') labels = learn.dls.vocab def predict(img): img = PILImage.create(img) pred,pred_idx,probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} demo=gr.Interface(fn=predict, inputs=gr.Image(), outputs=gr.Label(num_top_classes=2)).launch(share=True) if __name__ == "__main__": demo.launch()