paul
commited on
Commit
•
b4fd18c
1
Parent(s):
df1bba5
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- imagefolder
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
- precision
|
10 |
+
- recall
|
11 |
+
- f1
|
12 |
+
model-index:
|
13 |
+
- name: mit-b2-VF2-finetuned-memes
|
14 |
+
results:
|
15 |
+
- task:
|
16 |
+
name: Image Classification
|
17 |
+
type: image-classification
|
18 |
+
dataset:
|
19 |
+
name: imagefolder
|
20 |
+
type: imagefolder
|
21 |
+
config: default
|
22 |
+
split: train
|
23 |
+
args: default
|
24 |
+
metrics:
|
25 |
+
- name: Accuracy
|
26 |
+
type: accuracy
|
27 |
+
value: 0.8307573415765069
|
28 |
+
- name: Precision
|
29 |
+
type: precision
|
30 |
+
value: 0.8272186656187493
|
31 |
+
- name: Recall
|
32 |
+
type: recall
|
33 |
+
value: 0.8307573415765069
|
34 |
+
- name: F1
|
35 |
+
type: f1
|
36 |
+
value: 0.8286939083150942
|
37 |
+
---
|
38 |
+
|
39 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
40 |
+
should probably proofread and complete it, then remove this comment. -->
|
41 |
+
|
42 |
+
# mit-b2-VF2-finetuned-memes
|
43 |
+
|
44 |
+
This model is a fine-tuned version of [nvidia/mit-b2](https://huggingface.co/nvidia/mit-b2) on the imagefolder dataset.
|
45 |
+
It achieves the following results on the evaluation set:
|
46 |
+
- Loss: 0.6547
|
47 |
+
- Accuracy: 0.8308
|
48 |
+
- Precision: 0.8272
|
49 |
+
- Recall: 0.8308
|
50 |
+
- F1: 0.8287
|
51 |
+
|
52 |
+
## Model description
|
53 |
+
|
54 |
+
More information needed
|
55 |
+
|
56 |
+
## Intended uses & limitations
|
57 |
+
|
58 |
+
More information needed
|
59 |
+
|
60 |
+
## Training and evaluation data
|
61 |
+
|
62 |
+
More information needed
|
63 |
+
|
64 |
+
## Training procedure
|
65 |
+
|
66 |
+
### Training hyperparameters
|
67 |
+
|
68 |
+
The following hyperparameters were used during training:
|
69 |
+
- learning_rate: 0.00012
|
70 |
+
- train_batch_size: 64
|
71 |
+
- eval_batch_size: 64
|
72 |
+
- seed: 42
|
73 |
+
- gradient_accumulation_steps: 4
|
74 |
+
- total_train_batch_size: 256
|
75 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
76 |
+
- lr_scheduler_type: linear
|
77 |
+
- lr_scheduler_warmup_ratio: 0.1
|
78 |
+
- num_epochs: 20
|
79 |
+
|
80 |
+
### Training results
|
81 |
+
|
82 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
83 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
84 |
+
| 1.3077 | 0.99 | 20 | 1.1683 | 0.5549 | 0.5621 | 0.5549 | 0.5286 |
|
85 |
+
| 0.9359 | 1.99 | 40 | 0.8573 | 0.6731 | 0.6807 | 0.6731 | 0.6535 |
|
86 |
+
| 0.7219 | 2.99 | 60 | 0.7106 | 0.7272 | 0.7359 | 0.7272 | 0.7246 |
|
87 |
+
| 0.6013 | 3.99 | 80 | 0.6445 | 0.7550 | 0.7686 | 0.7550 | 0.7558 |
|
88 |
+
| 0.5243 | 4.99 | 100 | 0.6717 | 0.7573 | 0.8077 | 0.7573 | 0.7584 |
|
89 |
+
| 0.4409 | 5.99 | 120 | 0.5315 | 0.8068 | 0.8027 | 0.8068 | 0.7989 |
|
90 |
+
| 0.3325 | 6.99 | 140 | 0.5159 | 0.8230 | 0.8236 | 0.8230 | 0.8158 |
|
91 |
+
| 0.2719 | 7.99 | 160 | 0.5250 | 0.8215 | 0.8227 | 0.8215 | 0.8202 |
|
92 |
+
| 0.242 | 8.99 | 180 | 0.5087 | 0.8277 | 0.8260 | 0.8277 | 0.8268 |
|
93 |
+
| 0.2247 | 9.99 | 200 | 0.5313 | 0.8215 | 0.8275 | 0.8215 | 0.8218 |
|
94 |
+
| 0.1955 | 10.99 | 220 | 0.6167 | 0.8130 | 0.8062 | 0.8130 | 0.8073 |
|
95 |
+
| 0.1567 | 11.99 | 240 | 0.5859 | 0.8168 | 0.8185 | 0.8168 | 0.8173 |
|
96 |
+
| 0.1479 | 12.99 | 260 | 0.5938 | 0.8215 | 0.8169 | 0.8215 | 0.8178 |
|
97 |
+
| 0.1241 | 13.99 | 280 | 0.6187 | 0.8261 | 0.8234 | 0.8261 | 0.8239 |
|
98 |
+
| 0.1114 | 14.99 | 300 | 0.6419 | 0.8261 | 0.8351 | 0.8261 | 0.8293 |
|
99 |
+
| 0.1022 | 15.99 | 320 | 0.6322 | 0.8323 | 0.8284 | 0.8323 | 0.8294 |
|
100 |
+
| 0.0941 | 16.99 | 340 | 0.6595 | 0.8269 | 0.8266 | 0.8269 | 0.8263 |
|
101 |
+
| 0.0935 | 17.99 | 360 | 0.6674 | 0.8269 | 0.8218 | 0.8269 | 0.8237 |
|
102 |
+
| 0.089 | 18.99 | 380 | 0.6533 | 0.8253 | 0.8222 | 0.8253 | 0.8235 |
|
103 |
+
| 0.0794 | 19.99 | 400 | 0.6547 | 0.8308 | 0.8272 | 0.8308 | 0.8287 |
|
104 |
+
|
105 |
+
|
106 |
+
### Framework versions
|
107 |
+
|
108 |
+
- Transformers 4.24.0.dev0
|
109 |
+
- Pytorch 1.11.0+cu102
|
110 |
+
- Datasets 2.6.1.dev0
|
111 |
+
- Tokenizers 0.13.1
|