jaygala24 commited on
Commit
67ee8b6
·
1 Parent(s): f7babd3

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +58 -0
README.md ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - accelerator
5
+ metrics:
6
+ - accuracy
7
+ model-index:
8
+ - name: finetuned-vit-base-patch16-224-upside-down-detector
9
+ results: []
10
+ ---
11
+
12
+ # finetuned-vit-base-patch16-224-upside-down-detector
13
+
14
+ This model is a fine-tuned version of [vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the custom image orientation dataset adapted from the [beans](https://huggingface.co/datasets/beans) dataset. It achieves the following results on the evaluation set:
15
+ - Accuracy: 0.8947
16
+
17
+ ## Training and evaluation data
18
+
19
+ The custom dataset for image orientation adapted from [beans](https://huggingface.co/datasets/beans) dataset contains a total of 2,590 image samples with 1,295 original and 1,295 upside down. The model was fine-tuned on the train subset and evaluated on validation and test subsets. The dataset splits are listed below:
20
+
21
+ | Split | # examples |
22
+ |:----------:|:----------:|
23
+ | train | 2068 |
24
+ | validation | 133 |
25
+ | test | 128 |
26
+
27
+ ## Training procedure
28
+
29
+ ### Training hyperparameters
30
+
31
+ The following hyperparameters were used during training:
32
+ - learning_rate: 2e-04
33
+ - train_batch_size: 32
34
+ - eval_batch_size: 32
35
+ - seed: 42
36
+ - total_train_batch_size: 32
37
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
38
+ - lr_scheduler_type: linear
39
+ - lr_scheduler_warmup_steps: 32
40
+ - num_epochs: 5
41
+
42
+ ### Training results
43
+
44
+ | Epoch | Accuracy |
45
+ |:----------:|:----------:|
46
+ | 0 | 0.8609 |
47
+ | 1 | 0.8835 |
48
+ | 2 | 0.8571 |
49
+ | 3 | 0.8941 |
50
+ | 4 | 0.8941 |
51
+
52
+ ### Framework versions
53
+
54
+ - Transformers 4.17.0
55
+ - Pytorch 1.9.0+cu111
56
+ - Pytorch/XLA 1.9
57
+ - Datasets 2.0.0
58
+ - Tokenizers 0.12.0