File size: 13,958 Bytes
b78ae92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9043dde
 
 
 
 
 
 
 
 
f625a9e
b78ae92
 
 
 
 
f625a9e
b78ae92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9043dde
b78ae92
9043dde
b78ae92
 
9043dde
 
 
 
 
 
b78ae92
33e4bc7
 
 
f625a9e
 
 
 
33e4bc7
b78ae92
 
 
 
 
 
 
 
b1ba841
b78ae92
 
 
 
 
 
 
 
 
 
 
 
9043dde
 
 
b78ae92
 
b1ba841
 
 
 
 
b78ae92
 
 
 
17af2df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f625a9e
 
b1ba841
f625a9e
287debd
b78ae92
 
 
 
 
 
 
 
 
 
f625a9e
b78ae92
 
 
 
 
b07fb37
b78ae92
 
f625a9e
 
 
 
 
 
b1ba841
 
b78ae92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b07fb37
 
 
 
 
 
 
 
 
 
 
 
 
 
b78ae92
 
 
 
 
 
 
287debd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
import argparse
import os
import random
from urllib import request

import torch
import torch.nn.functional as F
import torchaudio
import progressbar
import ocotillo

from models.diffusion_decoder import DiffusionTts
from models.autoregressive import UnifiedVoice
from tqdm import tqdm

from models.arch_util import TorchMelSpectrogram
from models.text_voice_clip import VoiceCLIP
from models.vocoder import UnivNetGenerator
from utils.audio import load_audio, wav_to_univnet_mel, denormalize_tacotron_mel
from utils.diffusion import SpacedDiffusion, space_timesteps, get_named_beta_schedule
from utils.tokenizer import VoiceBpeTokenizer, lev_distance


pbar = None
def download_models():
    MODELS = {
        'clip.pth': 'https://huggingface.co/jbetker/tortoise-tts-clip/resolve/main/pytorch-model.bin',
        'diffusion.pth': 'https://huggingface.co/jbetker/tortoise-tts-diffusion-v1/resolve/main/pytorch-model.bin',
        'autoregressive.pth': 'https://huggingface.co/jbetker/tortoise-tts-autoregressive/resolve/main/pytorch-model.bin'
    }
    os.makedirs('.models', exist_ok=True)
    def show_progress(block_num, block_size, total_size):
        global pbar
        if pbar is None:
            pbar = progressbar.ProgressBar(maxval=total_size)
            pbar.start()

        downloaded = block_num * block_size
        if downloaded < total_size:
            pbar.update(downloaded)
        else:
            pbar.finish()
            pbar = None
    for model_name, url in MODELS.items():
        if os.path.exists(f'.models/{model_name}'):
            continue
        print(f'Downloading {model_name} from {url}...')
        request.urlretrieve(url, f'.models/{model_name}', show_progress)
        print('Done.')


def pad_or_truncate(t, length):
    if t.shape[-1] == length:
        return t
    elif t.shape[-1] < length:
        return F.pad(t, (0, length-t.shape[-1]))
    else:
        return t[..., :length]


def load_discrete_vocoder_diffuser(trained_diffusion_steps=4000, desired_diffusion_steps=200, cond_free=True, cond_free_k=1):
    """
    Helper function to load a GaussianDiffusion instance configured for use as a vocoder.
    """
    return SpacedDiffusion(use_timesteps=space_timesteps(trained_diffusion_steps, [desired_diffusion_steps]), model_mean_type='epsilon',
                           model_var_type='learned_range', loss_type='mse', betas=get_named_beta_schedule('linear', trained_diffusion_steps),
                           conditioning_free=cond_free, conditioning_free_k=cond_free_k)


def load_conditioning(clip, cond_length=132300):
    gap = clip.shape[-1] - cond_length
    if gap < 0:
        clip = F.pad(clip, pad=(0, abs(gap)))
    elif gap > 0:
        rand_start = random.randint(0, gap)
        clip = clip[:, rand_start:rand_start + cond_length]
    mel_clip = TorchMelSpectrogram()(clip.unsqueeze(0)).squeeze(0)
    return mel_clip.unsqueeze(0).cuda()


def fix_autoregressive_output(codes, stop_token):
    """
    This function performs some padding on coded audio that fixes a mismatch issue between what the diffusion model was
    trained on and what the autoregressive code generator creates (which has no padding or end).
    This is highly specific to the DVAE being used, so this particular coding will not necessarily work if used with
    a different DVAE. This can be inferred by feeding a audio clip padded with lots of zeros on the end through the DVAE
    and copying out the last few codes.

    Failing to do this padding will produce speech with a harsh end that sounds like "BLAH" or similar.
    """
    # Strip off the autoregressive stop token and add padding.
    stop_token_indices = (codes == stop_token).nonzero()
    if len(stop_token_indices) == 0:
        print("No stop tokens found, enjoy that output of yours!")
        return codes
    else:
        codes[stop_token_indices] = 83
    stm = stop_token_indices.min().item()
    codes[stm:] = 83
    if stm - 3 < codes.shape[0]:
        codes[-3] = 45
        codes[-2] = 45
        codes[-1] = 248

    return codes


def do_spectrogram_diffusion(diffusion_model, diffuser, mel_codes, conditioning_samples, temperature=1):
    """
    Uses the specified diffusion model to convert discrete codes into a spectrogram.
    """
    with torch.no_grad():
        cond_mels = []
        for sample in conditioning_samples:
            sample = pad_or_truncate(sample, 102400)
            cond_mel = wav_to_univnet_mel(sample.to(mel_codes.device), do_normalization=False)
            cond_mels.append(cond_mel)
        cond_mels = torch.stack(cond_mels, dim=1)

        output_seq_len = mel_codes.shape[-1]*4*24000//22050  # This diffusion model converts from 22kHz spectrogram codes to a 24kHz spectrogram signal.
        output_shape = (mel_codes.shape[0], 100, output_seq_len)
        precomputed_embeddings = diffusion_model.timestep_independent(mel_codes, cond_mels, output_seq_len, False)

        noise = torch.randn(output_shape, device=mel_codes.device) * temperature
        mel = diffuser.p_sample_loop(diffusion_model, output_shape, noise=noise,
                                      model_kwargs={'precomputed_aligned_embeddings': precomputed_embeddings})
        return denormalize_tacotron_mel(mel)[:,:,:output_seq_len]


class TextToSpeech:
    def __init__(self, autoregressive_batch_size=32):
        self.autoregressive_batch_size = autoregressive_batch_size
        self.tokenizer = VoiceBpeTokenizer()
        download_models()

        self.autoregressive = UnifiedVoice(max_mel_tokens=604, max_text_tokens=402, max_conditioning_inputs=2, layers=30,
                                      model_dim=1024,
                                      heads=16, number_text_tokens=256, start_text_token=255, checkpointing=False,
                                      train_solo_embeddings=False,
                                      average_conditioning_embeddings=True).cpu().eval()
        self.autoregressive.load_state_dict(torch.load('.models/autoregressive.pth'))

        self.clip = VoiceCLIP(dim_text=512, dim_speech=512, dim_latent=512, num_text_tokens=256, text_enc_depth=12,
                             text_seq_len=350, text_heads=8,
                             num_speech_tokens=8192, speech_enc_depth=12, speech_heads=8, speech_seq_len=430,
                             use_xformers=True).cpu().eval()
        self.clip.load_state_dict(torch.load('.models/clip.pth'))

        self.diffusion = DiffusionTts(model_channels=1024, num_layers=10, in_channels=100, out_channels=200,
                                      in_latent_channels=1024, in_tokens=8193, dropout=0, use_fp16=False, num_heads=16,
                                      layer_drop=0, unconditioned_percentage=0).cpu().eval()
        self.diffusion.load_state_dict(torch.load('.models/diffusion.pth'))

        self.diffusion_next = DiffusionTts(model_channels=1024, num_layers=10, in_channels=100, out_channels=200,
                                      in_latent_channels=1024, in_tokens=8193, dropout=0, use_fp16=False, num_heads=16,
                                      layer_drop=0, unconditioned_percentage=0).cpu().eval()
        self.diffusion_next.load_state_dict(torch.load('.models/diffusion_next.pth'))

        self.vocoder = UnivNetGenerator().cpu()
        self.vocoder.load_state_dict(torch.load('.models/vocoder.pth')['model_g'])
        self.vocoder.eval(inference=True)

    def tts_with_preset(self, text, voice_samples, preset='intelligible', **kwargs):
        """
        Calls TTS with one of a set of preset generation parameters. Options:
            'intelligible': Maximizes the probability of understandable words at the cost of diverse voices, intonation and prosody.
            'realistic': Increases the diversity of spoken voices and improves realism of vocal characteristics at the cost of intelligibility.
            'mid': Somewhere between 'intelligible' and 'realistic'.
        """
        presets = {
            'intelligible': {'temperature': .5, 'length_penalty': 2.0, 'repetition_penalty': 2.0, 'top_p': .5, 'diffusion_iterations': 100, 'cond_free': True, 'cond_free_k': .7, 'diffusion_temperature': .7},
            'mid': {'temperature': .7, 'length_penalty': 1.0, 'repetition_penalty': 2.0, 'top_p': .7, 'diffusion_iterations': 100, 'cond_free': True, 'cond_free_k': 1.5, 'diffusion_temperature': .8},
            'realistic': {'temperature': .9, 'length_penalty': 1.0, 'repetition_penalty': 1.3, 'top_p': .9, 'diffusion_iterations': 100, 'cond_free': True, 'cond_free_k': 2, 'diffusion_temperature': 1},
        }
        kwargs.update(presets[preset])
        return self.tts(text, voice_samples, **kwargs)

    def tts(self, text, voice_samples, k=1,
            # autoregressive generation parameters follow
            num_autoregressive_samples=512, temperature=.5, length_penalty=1, repetition_penalty=2.0, top_p=.5,
            # diffusion generation parameters follow
            diffusion_iterations=100, cond_free=True, cond_free_k=2, diffusion_temperature=.7,):
        text = torch.IntTensor(self.tokenizer.encode(text)).unsqueeze(0).cuda()
        text = F.pad(text, (0, 1))  # This may not be necessary.

        conds = []
        if not isinstance(voice_samples, list):
            voice_samples = [voice_samples]
        for vs in voice_samples:
            conds.append(load_conditioning(vs))
        conds = torch.stack(conds, dim=1)

        diffuser = load_discrete_vocoder_diffuser(desired_diffusion_steps=diffusion_iterations, cond_free=cond_free, cond_free_k=cond_free_k)

        with torch.no_grad():
            samples = []
            num_batches = num_autoregressive_samples // self.autoregressive_batch_size
            stop_mel_token = self.autoregressive.stop_mel_token
            calm_token = 83  # This is the token for coding silence, which is fixed in place with "fix_autoregressive_output"
            self.autoregressive = self.autoregressive.cuda()
            for b in tqdm(range(num_batches)):
                codes = self.autoregressive.inference_speech(conds, text,
                                                             do_sample=True,
                                                             top_p=top_p,
                                                             temperature=temperature,
                                                             num_return_sequences=self.autoregressive_batch_size,
                                                             length_penalty=length_penalty,
                                                             repetition_penalty=repetition_penalty)
                padding_needed = self.autoregressive.max_mel_tokens - codes.shape[1]
                codes = F.pad(codes, (0, padding_needed), value=stop_mel_token)
                samples.append(codes)
            self.autoregressive = self.autoregressive.cpu()

            clip_results = []
            self.clip = self.clip.cuda()
            for batch in samples:
                for i in range(batch.shape[0]):
                    batch[i] = fix_autoregressive_output(batch[i], stop_mel_token)
                clip_results.append(self.clip(text.repeat(batch.shape[0], 1), batch, return_loss=False))
            clip_results = torch.cat(clip_results, dim=0)
            samples = torch.cat(samples, dim=0)
            best_results = samples[torch.topk(clip_results, k=k).indices]
            self.clip = self.clip.cpu()
            del samples

            print("Performing vocoding..")
            wav_candidates = []
            self.diffusion = self.diffusion.cuda()
            self.vocoder = self.vocoder.cuda()
            for b in range(best_results.shape[0]):
                codes = best_results[b].unsqueeze(0)

                # Find the first occurrence of the "calm" token and trim the codes to that.
                ctokens = 0
                for k in range(codes.shape[-1]):
                    if codes[0, k] == calm_token:
                        ctokens += 1
                    else:
                        ctokens = 0
                    if ctokens > 8:  # 8 tokens gives the diffusion model some "breathing room" to terminate speech.
                        codes = codes[:, :k]
                        break

                mel = do_spectrogram_diffusion(self.diffusion, diffuser, codes, voice_samples, temperature=diffusion_temperature)
                wav = self.vocoder.inference(mel)
                wav_candidates.append(wav.cpu())
            self.diffusion = self.diffusion.cpu()
            self.vocoder = self.vocoder.cpu()

            if len(wav_candidates) > 1:
                return wav_candidates
            return wav_candidates[0]

    def refine_for_intellibility(self, wav_candidates, corresponding_codes, output_path):
        """
        Further refine the remaining candidates using a ASR model to pick out the ones that are the most understandable.
        TODO: finish this function
        :param wav_candidates:
        :return:
        """
        transcriber = ocotillo.Transcriber(on_cuda=True)
        transcriptions = transcriber.transcribe_batch(torch.cat(wav_candidates, dim=0).squeeze(1), 24000)
        best = 99999999
        for i, transcription in enumerate(transcriptions):
            dist = lev_distance(transcription, args.text.lower())
            if dist < best:
                best = dist
                best_codes = corresponding_codes[i].unsqueeze(0)
                best_wav = wav_candidates[i]
        del transcriber
        torchaudio.save(os.path.join(output_path, f'{voice}_poor.wav'), best_wav.squeeze(0).cpu(), 24000)

        # Perform diffusion again with the high-quality diffuser.
        mel = do_spectrogram_diffusion(diffusion, final_diffuser, best_codes, cond_diffusion, mean=False)
        wav = vocoder.inference(mel)
        torchaudio.save(os.path.join(args.output_path, f'{voice}.wav'), wav.squeeze(0).cpu(), 24000)