File size: 21,439 Bytes
b78ae92 84d641c b78ae92 1e3fde7 8e94abd b78ae92 8e94abd b78ae92 da31baa 1e3fde7 da31baa b78ae92 2a67565 b78ae92 1e3fde7 b78ae92 9043dde da31baa 9043dde f625a9e b78ae92 f625a9e b78ae92 da31baa b78ae92 979ff6e b78ae92 979ff6e b78ae92 a064290 b78ae92 9043dde b78ae92 9043dde 84d641c 9043dde 84d641c 9043dde b78ae92 84d641c f625a9e 84d641c f625a9e a064290 33e4bc7 b78ae92 1e3fde7 b78ae92 84d641c c52cc78 b78ae92 b1ba841 b78ae92 fc8d52a b78ae92 c52cc78 56f8385 8e94abd ad0f3fd 8e94abd b78ae92 9043dde c52cc78 b78ae92 c52cc78 17af2df c52cc78 17af2df c52cc78 713281e c52cc78 17af2df c52cc78 8696bb4 17af2df a064290 f625a9e fc8d52a a064290 8e94abd f625a9e 713281e a064290 b78ae92 da31baa b78ae92 f625a9e b78ae92 b07fb37 b78ae92 a064290 f625a9e 713281e fc8d52a 713281e fc8d52a b78ae92 8e94abd a064290 b78ae92 8e94abd b78ae92 8e94abd b78ae92 3214ca0 ad0f3fd 3214ca0 ad0f3fd 3214ca0 a064290 b78ae92 b07fb37 3214ca0 b07fb37 3214ca0 b07fb37 a064290 b78ae92 287debd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 |
import argparse
import os
import random
from urllib import request
import torch
import torch.nn.functional as F
import progressbar
import torchaudio
from models.classifier import AudioMiniEncoderWithClassifierHead
from models.cvvp import CVVP
from models.diffusion_decoder import DiffusionTts
from models.autoregressive import UnifiedVoice
from tqdm import tqdm
from models.arch_util import TorchMelSpectrogram
from models.clvp import CLVP
from models.vocoder import UnivNetGenerator
from utils.audio import load_audio, wav_to_univnet_mel, denormalize_tacotron_mel
from utils.diffusion import SpacedDiffusion, space_timesteps, get_named_beta_schedule
from utils.tokenizer import VoiceBpeTokenizer, lev_distance
pbar = None
def download_models(specific_models=None):
"""
Call to download all the models that Tortoise uses.
"""
MODELS = {
'autoregressive.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/hf/.models/autoregressive.pth',
'clvp.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/hf/.models/clvp.pth',
'cvvp.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/hf/.models/cvvp.pth',
'diffusion_decoder.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/hf/.models/diffusion_decoder.pth',
'vocoder.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/hf/.models/vocoder.pth',
}
os.makedirs('.models', exist_ok=True)
def show_progress(block_num, block_size, total_size):
global pbar
if pbar is None:
pbar = progressbar.ProgressBar(maxval=total_size)
pbar.start()
downloaded = block_num * block_size
if downloaded < total_size:
pbar.update(downloaded)
else:
pbar.finish()
pbar = None
for model_name, url in MODELS.items():
if specific_models is not None and model_name not in specific_models:
continue
if os.path.exists(f'.models/{model_name}'):
continue
print(f'Downloading {model_name} from {url}...')
request.urlretrieve(url, f'.models/{model_name}', show_progress)
print('Done.')
def pad_or_truncate(t, length):
"""
Utility function for forcing <t> to have the specified sequence length, whether by clipping it or padding it with 0s.
"""
if t.shape[-1] == length:
return t
elif t.shape[-1] < length:
return F.pad(t, (0, length-t.shape[-1]))
else:
return t[..., :length]
def load_discrete_vocoder_diffuser(trained_diffusion_steps=4000, desired_diffusion_steps=200, cond_free=True, cond_free_k=1):
"""
Helper function to load a GaussianDiffusion instance configured for use as a vocoder.
"""
return SpacedDiffusion(use_timesteps=space_timesteps(trained_diffusion_steps, [desired_diffusion_steps]), model_mean_type='epsilon',
model_var_type='learned_range', loss_type='mse', betas=get_named_beta_schedule('linear', trained_diffusion_steps),
conditioning_free=cond_free, conditioning_free_k=cond_free_k)
def format_conditioning(clip, cond_length=132300):
"""
Converts the given conditioning signal to a MEL spectrogram and clips it as expected by the models.
"""
gap = clip.shape[-1] - cond_length
if gap < 0:
clip = F.pad(clip, pad=(0, abs(gap)))
elif gap > 0:
rand_start = random.randint(0, gap)
clip = clip[:, rand_start:rand_start + cond_length]
mel_clip = TorchMelSpectrogram()(clip.unsqueeze(0)).squeeze(0)
return mel_clip.unsqueeze(0).cuda()
def fix_autoregressive_output(codes, stop_token, complain=True):
"""
This function performs some padding on coded audio that fixes a mismatch issue between what the diffusion model was
trained on and what the autoregressive code generator creates (which has no padding or end).
This is highly specific to the DVAE being used, so this particular coding will not necessarily work if used with
a different DVAE. This can be inferred by feeding a audio clip padded with lots of zeros on the end through the DVAE
and copying out the last few codes.
Failing to do this padding will produce speech with a harsh end that sounds like "BLAH" or similar.
"""
# Strip off the autoregressive stop token and add padding.
stop_token_indices = (codes == stop_token).nonzero()
if len(stop_token_indices) == 0:
if complain:
print("No stop tokens found, enjoy that output of yours!")
return codes
else:
codes[stop_token_indices] = 83
stm = stop_token_indices.min().item()
codes[stm:] = 83
if stm - 3 < codes.shape[0]:
codes[-3] = 45
codes[-2] = 45
codes[-1] = 248
return codes
def do_spectrogram_diffusion(diffusion_model, diffuser, latents, conditioning_samples, temperature=1, verbose=True):
"""
Uses the specified diffusion model to convert discrete codes into a spectrogram.
"""
with torch.no_grad():
cond_mels = []
for sample in conditioning_samples:
# The diffuser operates at a sample rate of 24000 (except for the latent inputs)
sample = torchaudio.functional.resample(sample, 22050, 24000)
sample = pad_or_truncate(sample, 102400)
cond_mel = wav_to_univnet_mel(sample.to(latents.device), do_normalization=False)
cond_mels.append(cond_mel)
cond_mels = torch.stack(cond_mels, dim=1)
output_seq_len = latents.shape[1] * 4 * 24000 // 22050 # This diffusion model converts from 22kHz spectrogram codes to a 24kHz spectrogram signal.
output_shape = (latents.shape[0], 100, output_seq_len)
precomputed_embeddings = diffusion_model.timestep_independent(latents, cond_mels, output_seq_len, False)
noise = torch.randn(output_shape, device=latents.device) * temperature
mel = diffuser.p_sample_loop(diffusion_model, output_shape, noise=noise,
model_kwargs={'precomputed_aligned_embeddings': precomputed_embeddings},
progress=verbose)
return denormalize_tacotron_mel(mel)[:,:,:output_seq_len]
def classify_audio_clip(clip):
"""
Returns whether or not Tortoises' classifier thinks the given clip came from Tortoise.
:param clip: torch tensor containing audio waveform data (get it from load_audio)
:return: True if the clip was classified as coming from Tortoise and false if it was classified as real.
"""
download_models(['classifier'])
classifier = AudioMiniEncoderWithClassifierHead(2, spec_dim=1, embedding_dim=512, depth=5, downsample_factor=4,
resnet_blocks=2, attn_blocks=4, num_attn_heads=4, base_channels=32,
dropout=0, kernel_size=5, distribute_zero_label=False)
classifier.load_state_dict(torch.load('.models/classifier.pth', map_location=torch.device('cpu')))
clip = clip.cpu().unsqueeze(0)
results = F.softmax(classifier(clip), dim=-1)
return results[0][0]
class TextToSpeech:
"""
Main entry point into Tortoise.
:param autoregressive_batch_size: Specifies how many samples to generate per batch. Lower this if you are seeing
GPU OOM errors. Larger numbers generates slightly faster.
"""
def __init__(self, autoregressive_batch_size=16):
self.autoregressive_batch_size = autoregressive_batch_size
self.tokenizer = VoiceBpeTokenizer()
download_models()
self.autoregressive = UnifiedVoice(max_mel_tokens=604, max_text_tokens=402, max_conditioning_inputs=2, layers=30,
model_dim=1024,
heads=16, number_text_tokens=255, start_text_token=255, checkpointing=False,
train_solo_embeddings=False,
average_conditioning_embeddings=True).cpu().eval()
self.autoregressive.load_state_dict(torch.load('.models/autoregressive.pth'))
self.clvp = CLVP(dim_text=512, dim_speech=512, dim_latent=512, num_text_tokens=256, text_enc_depth=12,
text_seq_len=350, text_heads=8,
num_speech_tokens=8192, speech_enc_depth=12, speech_heads=8, speech_seq_len=430,
use_xformers=True).cpu().eval()
self.clvp.load_state_dict(torch.load('.models/clvp.pth'))
self.cvvp = CVVP(model_dim=512, transformer_heads=8, dropout=0, mel_codes=8192, conditioning_enc_depth=8, cond_mask_percentage=0,
speech_enc_depth=8, speech_mask_percentage=0, latent_multiplier=1).cpu().eval()
self.cvvp.load_state_dict(torch.load('.models/cvvp.pth'))
self.diffusion = DiffusionTts(model_channels=1024, num_layers=10, in_channels=100, out_channels=200,
in_latent_channels=1024, in_tokens=8193, dropout=0, use_fp16=False, num_heads=16,
layer_drop=0, unconditioned_percentage=0).cpu().eval()
self.diffusion.load_state_dict(torch.load('.models/diffusion_decoder.pth'))
self.vocoder = UnivNetGenerator().cpu()
self.vocoder.load_state_dict(torch.load('.models/vocoder.pth')['model_g'])
self.vocoder.eval(inference=True)
def tts_with_preset(self, text, voice_samples, preset='fast', **kwargs):
"""
Calls TTS with one of a set of preset generation parameters. Options:
'ultra_fast': Produces speech at a speed which belies the name of this repo. (Not really, but it's definitely fastest).
'fast': Decent quality speech at a decent inference rate. A good choice for mass inference.
'standard': Very good quality. This is generally about as good as you are going to get.
'high_quality': Use if you want the absolute best. This is not really worth the compute, though.
"""
# Use generally found best tuning knobs for generation.
kwargs.update({'temperature': .8, 'length_penalty': 1.0, 'repetition_penalty': 2.0,
#'typical_sampling': True,
'top_p': .8,
'cond_free_k': 2.0, 'diffusion_temperature': 1.0})
# Presets are defined here.
presets = {
'ultra_fast': {'num_autoregressive_samples': 32, 'diffusion_iterations': 16, 'cond_free': False},
'fast': {'num_autoregressive_samples': 96, 'diffusion_iterations': 32},
'standard': {'num_autoregressive_samples': 256, 'diffusion_iterations': 128},
'high_quality': {'num_autoregressive_samples': 512, 'diffusion_iterations': 1024},
}
kwargs.update(presets[preset])
return self.tts(text, voice_samples, **kwargs)
def tts(self, text, voice_samples, k=1, verbose=True,
# autoregressive generation parameters follow
num_autoregressive_samples=512, temperature=.8, length_penalty=1, repetition_penalty=2.0, top_p=.8, max_mel_tokens=500,
typical_sampling=False, typical_mass=.9,
# CLVP & CVVP parameters
clvp_cvvp_slider=.5,
# diffusion generation parameters follow
diffusion_iterations=100, cond_free=True, cond_free_k=2, diffusion_temperature=1.0,
**hf_generate_kwargs):
"""
Produces an audio clip of the given text being spoken with the given reference voice.
:param text: Text to be spoken.
:param voice_samples: List of 2 or more ~10 second reference clips which should be torch tensors containing 22.05kHz waveform data.
:param k: The number of returned clips. The most likely (as determined by Tortoises' CLVP and CVVP models) clips are returned.
:param verbose: Whether or not to print log messages indicating the progress of creating a clip. Default=true.
~~AUTOREGRESSIVE KNOBS~~
:param num_autoregressive_samples: Number of samples taken from the autoregressive model, all of which are filtered using CLVP+CVVP.
As Tortoise is a probabilistic model, more samples means a higher probability of creating something "great".
:param temperature: The softmax temperature of the autoregressive model.
:param length_penalty: A length penalty applied to the autoregressive decoder. Higher settings causes the model to produce more terse outputs.
:param repetition_penalty: A penalty that prevents the autoregressive decoder from repeating itself during decoding. Can be used to reduce the incidence
of long silences or "uhhhhhhs", etc.
:param top_p: P value used in nucleus sampling. (0,1]. Lower values mean the decoder produces more "likely" (aka boring) outputs.
:param max_mel_tokens: Restricts the output length. (0,600] integer. Each unit is 1/20 of a second.
:param typical_sampling: Turns typical sampling on or off. This sampling mode is discussed in this paper: https://arxiv.org/abs/2202.00666
I was interested in the premise, but the results were not as good as I was hoping. This is off by default, but
could use some tuning.
:param typical_mass: The typical_mass parameter from the typical_sampling algorithm.
~~CLVP-CVVP KNOBS~~
:param clvp_cvvp_slider: Controls the influence of the CLVP and CVVP models in selecting the best output from the autoregressive model.
[0,1]. Values closer to 1 will cause Tortoise to emit clips that follow the text more. Values closer to
0 will cause Tortoise to emit clips that more closely follow the reference clip (e.g. the voice sounds more
similar).
~~DIFFUSION KNOBS~~
:param diffusion_iterations: Number of diffusion steps to perform. [0,4000]. More steps means the network has more chances to iteratively refine
the output, which should theoretically mean a higher quality output. Generally a value above 250 is not noticeably better,
however.
:param cond_free: Whether or not to perform conditioning-free diffusion. Conditioning-free diffusion performs two forward passes for
each diffusion step: one with the outputs of the autoregressive model and one with no conditioning priors. The output
of the two is blended according to the cond_free_k value below. Conditioning-free diffusion is the real deal, and
dramatically improves realism.
:param cond_free_k: Knob that determines how to balance the conditioning free signal with the conditioning-present signal. [0,inf].
As cond_free_k increases, the output becomes dominated by the conditioning-free signal.
Formula is: output=cond_present_output*(cond_free_k+1)-cond_absenct_output*cond_free_k
:param diffusion_temperature: Controls the variance of the noise fed into the diffusion model. [0,1]. Values at 0
are the "mean" prediction of the diffusion network and will sound bland and smeared.
~~OTHER STUFF~~
:param hf_generate_kwargs: The huggingface Transformers generate API is used for the autoregressive transformer.
Extra keyword args fed to this function get forwarded directly to that API. Documentation
here: https://huggingface.co/docs/transformers/internal/generation_utils
:return: Generated audio clip(s) as a torch tensor. Shape 1,S if k=1 else, (k,1,S) where S is the sample length.
Sample rate is 24kHz.
"""
text = torch.IntTensor(self.tokenizer.encode(text)).unsqueeze(0).cuda()
text = F.pad(text, (0, 1)) # This may not be necessary.
conds = []
if not isinstance(voice_samples, list):
voice_samples = [voice_samples]
for vs in voice_samples:
conds.append(format_conditioning(vs))
conds = torch.stack(conds, dim=1)
diffuser = load_discrete_vocoder_diffuser(desired_diffusion_steps=diffusion_iterations, cond_free=cond_free, cond_free_k=cond_free_k)
with torch.no_grad():
samples = []
num_batches = num_autoregressive_samples // self.autoregressive_batch_size
stop_mel_token = self.autoregressive.stop_mel_token
calm_token = 83 # This is the token for coding silence, which is fixed in place with "fix_autoregressive_output"
self.autoregressive = self.autoregressive.cuda()
if verbose:
print("Generating autoregressive samples..")
for b in tqdm(range(num_batches), disable=not verbose):
codes = self.autoregressive.inference_speech(conds, text,
do_sample=True,
top_p=top_p,
temperature=temperature,
num_return_sequences=self.autoregressive_batch_size,
length_penalty=length_penalty,
repetition_penalty=repetition_penalty,
max_generate_length=max_mel_tokens,
**hf_generate_kwargs)
padding_needed = max_mel_tokens - codes.shape[1]
codes = F.pad(codes, (0, padding_needed), value=stop_mel_token)
samples.append(codes)
self.autoregressive = self.autoregressive.cpu()
clip_results = []
self.clvp = self.clvp.cuda()
self.cvvp = self.cvvp.cuda()
if verbose:
print("Computing best candidates using CLVP and CVVP")
for batch in tqdm(samples, disable=not verbose):
for i in range(batch.shape[0]):
batch[i] = fix_autoregressive_output(batch[i], stop_mel_token)
clvp = self.clvp(text.repeat(batch.shape[0], 1), batch, return_loss=False)
cvvp_accumulator = 0
for cl in range(conds.shape[1]):
cvvp_accumulator = cvvp_accumulator + self.cvvp(conds[:, cl].repeat(batch.shape[0], 1, 1), batch, return_loss=False )
cvvp = cvvp_accumulator / conds.shape[1]
clip_results.append(clvp * clvp_cvvp_slider + cvvp * (1-clvp_cvvp_slider))
clip_results = torch.cat(clip_results, dim=0)
samples = torch.cat(samples, dim=0)
best_results = samples[torch.topk(clip_results, k=k).indices]
self.clvp = self.clvp.cpu()
self.cvvp = self.cvvp.cpu()
del samples
# The diffusion model actually wants the last hidden layer from the autoregressive model as conditioning
# inputs. Re-produce those for the top results. This could be made more efficient by storing all of these
# results, but will increase memory usage.
self.autoregressive = self.autoregressive.cuda()
best_latents = self.autoregressive(conds, text, torch.tensor([text.shape[-1]], device=conds.device), best_results,
torch.tensor([best_results.shape[-1]*self.autoregressive.mel_length_compression], device=conds.device),
return_latent=True, clip_inputs=False)
self.autoregressive = self.autoregressive.cpu()
if verbose:
print("Transforming autoregressive outputs into audio..")
wav_candidates = []
self.diffusion = self.diffusion.cuda()
self.vocoder = self.vocoder.cuda()
for b in range(best_results.shape[0]):
codes = best_results[b].unsqueeze(0)
latents = best_latents[b].unsqueeze(0)
# Find the first occurrence of the "calm" token and trim the codes to that.
ctokens = 0
for k in range(codes.shape[-1]):
if codes[0, k] == calm_token:
ctokens += 1
else:
ctokens = 0
if ctokens > 8: # 8 tokens gives the diffusion model some "breathing room" to terminate speech.
latents = latents[:, :k]
break
mel = do_spectrogram_diffusion(self.diffusion, diffuser, latents, voice_samples, temperature=diffusion_temperature, verbose=verbose)
wav = self.vocoder.inference(mel)
wav_candidates.append(wav.cpu())
self.diffusion = self.diffusion.cpu()
self.vocoder = self.vocoder.cpu()
if len(wav_candidates) > 1:
return wav_candidates
return wav_candidates[0]
|