File size: 1,793 Bytes
b78ae92 b1ba841 b78ae92 b1ba841 9db06e1 b1ba841 b78ae92 b1ba841 b78ae92 b1ba841 b78ae92 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
import os
import torchaudio
from api import TextToSpeech
from utils.audio import load_audio
if __name__ == '__main__':
fname = 'Y:\\libritts\\test-clean\\transcribed-brief-w2v.tsv'
outpath = 'D:\\tmp\\tortoise-tts-eval\\compare_vocoders'
outpath_real = 'D:\\tmp\\tortoise-tts-eval\\real'
os.makedirs(outpath, exist_ok=True)
os.makedirs(outpath_real, exist_ok=True)
with open(fname, 'r', encoding='utf-8') as f:
lines = [l.strip().split('\t') for l in f.readlines()]
recorder = open(os.path.join(outpath, 'transcript.tsv'), 'w', encoding='utf-8')
tts = TextToSpeech()
for e, line in enumerate(lines):
transcript = line[0]
if len(transcript) > 120:
continue # We need to support this, but cannot yet.
path = os.path.join(os.path.dirname(fname), line[1])
cond_audio = load_audio(path, 22050)
torchaudio.save(os.path.join(outpath_real, os.path.basename(line[1])), cond_audio, 22050)
sample, sample2 = tts.tts(transcript, [cond_audio, cond_audio], num_autoregressive_samples=512, k=1,
repetition_penalty=2.0, length_penalty=2, temperature=.5, top_p=.5,
diffusion_temperature=.7, cond_free_k=2, diffusion_iterations=200)
down = torchaudio.functional.resample(sample, 24000, 22050)
fout_path = os.path.join(outpath, 'old', os.path.basename(line[1]))
torchaudio.save(fout_path, down.squeeze(0), 22050)
down = torchaudio.functional.resample(sample2, 24000, 22050)
fout_path = os.path.join(outpath, 'new', os.path.basename(line[1]))
torchaudio.save(fout_path, down.squeeze(0), 22050)
recorder.write(f'{transcript}\t{fout_path}\n')
recorder.flush()
recorder.close() |