File size: 12,145 Bytes
33e4bc7 73e9929 33e4bc7 f37375b 73e9929 33e4bc7 f37375b 33e4bc7 73e9929 33e4bc7 73e9929 33e4bc7 b1ba841 73e9929 33e4bc7 73e9929 33e4bc7 73e9929 33e4bc7 73e9929 33e4bc7 73e9929 33e4bc7 73e9929 33e4bc7 73e9929 33e4bc7 73e9929 33e4bc7 73e9929 33e4bc7 73e9929 33e4bc7 b1ba841 73e9929 33e4bc7 73e9929 33e4bc7 73e9929 33e4bc7 73e9929 33e4bc7 b1ba841 73e9929 f37375b 33e4bc7 73e9929 33e4bc7 73e9929 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import GPT2PreTrainedModel, GPT2Config
from models.xtransformers import TransformerWrapper, Encoder, Decoder
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions
from models.arch_util import AttentionBlock
class InferenceModel(GPT2PreTrainedModel):
"""
Implementation of GPT2PreTrainedModel from transformers, which allows us to use their generation library with
this transformer.
"""
def __init__(self, model):
super().__init__(GPT2Config())
self.transformer = model
self.context = None
def parallelize(self, device_map=None):
# Not implemented.
pass
def deparallelize(self):
# Not implemented.
pass
def get_output_embeddings(self):
assert False, "Unsupported operation."
def set_output_embeddings(self, new_embeddings):
assert False, "Unsupported operation."
def store_context(self, context):
self.context = context
def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs):
token_type_ids = kwargs.get("token_type_ids", None)
# only last token for inputs_ids if past is defined in kwargs
if past:
input_ids = input_ids[:, -1].unsqueeze(-1)
if token_type_ids is not None:
token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
attention_mask = kwargs.get("attention_mask", None)
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past:
position_ids = position_ids[:, -1].unsqueeze(-1)
else:
position_ids = None
return {
"input_ids": input_ids,
"past_key_values": past,
"use_cache": kwargs.get("use_cache"),
"position_ids": position_ids,
"attention_mask": attention_mask,
"token_type_ids": token_type_ids,
}
def forward(
self,
input_ids=None,
past_key_values=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
labels=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
assert self.context is not None
assert inputs_embeds is None # Not supported by this inference model.
assert labels is None # Training not supported by this inference model.
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
out = self.transformer.decoder(input_ids, full_context=self.context, return_embeddings=True, past_key_values=past_key_values,
use_cache=use_cache, expected_seq_len=100)
if use_cache:
hidden_states, present_key_values = out
else:
hidden_states = out
present_key_values = None
logits = self.transformer.decoder.to_logits(hidden_states)
if not return_dict:
return (logits, )
return CausalLMOutputWithCrossAttentions(
loss=None,
logits=logits,
past_key_values=present_key_values,
hidden_states=hidden_states,
attentions=None,
cross_attentions=None,
)
@staticmethod
def _reorder_cache(past, beam_idx):
"""
This function is used to re-order the :obj:`past_key_values` cache if
:meth:`~transformers.PreTrainedModel.beam_search` or :meth:`~transformers.PreTrainedModel.beam_sample` is
called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step.
"""
return tuple(
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
for layer_past in past
)
class ResBlock(nn.Module):
"""
Basic residual convolutional block that uses GroupNorm.
"""
def __init__(self, chan):
super().__init__()
self.net = nn.Sequential(
nn.Conv1d(chan, chan, kernel_size=3, padding=1),
nn.GroupNorm(chan//8, chan),
nn.ReLU(),
nn.Conv1d(chan, chan, kernel_size=3, padding=1),
nn.GroupNorm(chan//8, chan)
)
def forward(self, x):
return F.relu(self.net(x) + x)
class ConditioningEncoder(nn.Module):
def __init__(self,
spec_dim,
embedding_dim,
attn_blocks=6,
num_attn_heads=4,
do_checkpointing=False):
super().__init__()
attn = []
self.init = nn.Sequential(nn.Conv1d(spec_dim, embedding_dim//4, kernel_size=5, padding=2),
nn.Conv1d(embedding_dim//4, embedding_dim//2, kernel_size=3, padding=1, stride=2),
ResBlock(embedding_dim//2),
nn.Conv1d(embedding_dim//2, embedding_dim, kernel_size=3, padding=1, stride=2))
for a in range(attn_blocks):
attn.append(AttentionBlock(embedding_dim, num_attn_heads, do_checkpoint=do_checkpointing))
self.attn = nn.Sequential(*attn)
self.dim = embedding_dim
def forward(self, x):
h = self.init(x)
h = self.attn(h)
return h.mean(dim=2)
class AutoregressiveCodegen(nn.Module):
def __init__(self, model_dim, depth, num_text_tokens=256, num_mel_tokens=8194, dropout=.1):
super().__init__()
assert depth >= 8 # This is the minimum bound to support the context interleaving that happens later.
self.START_TOKEN=8192
self.STOP_TOKEN=8193
self.START_TEXT_TOKEN = 255
self.STOP_TEXT_TOKEN = 0
self.max_text_token_id = num_text_tokens
self.max_mel_token_id = num_mel_tokens
self.mel_embedding = ConditioningEncoder(80, model_dim, do_checkpointing=False)
self.encoder = TransformerWrapper(
num_tokens=num_text_tokens,
use_pos_emb=False,
max_seq_len=-1,
attn_layers = Encoder(
depth=depth,
heads=model_dim//64,
dim=model_dim,
attn_dropout=dropout,
ff_dropout=dropout,
use_rmsnorm=True,
ff_glu=True,
ff_mult=1,
rotary_pos_emb=True,
attn_rel_pos_bias=True,
))
self.encoder.norm = nn.Identity() # This layer and the next are unused.
self.encoder.to_logits = nn.Identity()
self.decoder = TransformerWrapper(
num_tokens=num_mel_tokens,
use_pos_emb=False,
max_seq_len=-1,
attn_layers=Decoder(
depth=depth,
heads=model_dim//64,
dim=model_dim,
attn_dropout=dropout,
ff_dropout=dropout,
use_rmsnorm=True,
ff_glu=True,
ff_mult=1,
rotary_pos_emb=True,
cross_attend=True,
attn_rel_pos_bias=True,
))
def get_grad_norm_parameter_groups(self):
return {
'encoder': list(self.encoder.parameters()),
'decoder': list(self.decoder.parameters()),
'minicoder': list(self.mel_embedding.parameters()),
}
def forward(self, text_codes, conditioning_signal, mel_codes, wav_lengths, return_loss=True):
assert text_codes.max() < self.max_text_token_id and text_codes.min() >= 0, f'Invalid text code encountered: {text_codes.max()}, {text_codes.min()}'
assert mel_codes.max() < self.max_mel_token_id and mel_codes.min() >= 0, f'Invalid mel code encountered: {mel_codes.max()}, {mel_codes.min()}'
# Format mel_codes with a stop token on the end.
mel_lengths = wav_lengths // 1024 + 1
for b in range(mel_codes.shape[0]):
mel_codes[b, mel_lengths[b]:] = self.STOP_TOKEN
mel_codes = F.pad(mel_codes, (0, 1), value=self.STOP_TOKEN)
# Build the context
if len(conditioning_signal.shape) != 4:
conditioning_signal = conditioning_signal.unsqueeze(1)
cond_embs = []
for i in range(conditioning_signal.shape[1]):
cond_embs.append(self.mel_embedding(conditioning_signal[:, i]))
cond_emb = torch.stack(cond_embs, dim=1).mean(dim=1, keepdim=True)
# Since all positional embeddings are relative, it is (probably) important to "fix" the text with some permanent embeddings.
text_codes = F.pad(text_codes, (1,0), value=self.START_TEXT_TOKEN)
text_codes = F.pad(text_codes, (0,1), value=self.STOP_TEXT_TOKEN)
_, enc_text = self.encoder(text_codes, return_hiddens=True)
# Interleave cond_emb into the first few contexts.
full_context = enc_text
full_context[1] = cond_emb
full_context[3] = cond_emb
full_context[6] = cond_emb
# Execute the decoder
dec_inputs = F.pad(mel_codes, (1,0), value=self.START_TOKEN)[:, :-1]
dec = self.decoder(dec_inputs, full_context=full_context)
if not return_loss:
return dec
loss_mel = F.cross_entropy(dec.permute(0,2,1), mel_codes)
return loss_mel
def generate(self, conditioning_signal, text_codes, max_tokens=256, **hf_generate_kwargs):
inference_model = InferenceModel(self)
# Build the context
if len(conditioning_signal.shape) != 4:
conditioning_signal = conditioning_signal.unsqueeze(1)
cond_embs = []
for i in range(conditioning_signal.shape[1]):
cond_embs.append(self.mel_embedding(conditioning_signal[:, i]))
cond_emb = torch.stack(cond_embs, dim=1).mean(dim=1, keepdim=True)
text_codes = F.pad(text_codes, (1,0), value=self.START_TEXT_TOKEN)
text_codes = F.pad(text_codes, (0,1), value=self.STOP_TEXT_TOKEN)
_, enc_text = self.encoder(text_codes, return_hiddens=True)
# Interleave cond_emb into the first few contexts.
full_context = enc_text
full_context[1] = cond_emb
full_context[3] = cond_emb
full_context[6] = cond_emb
inference_model.store_context(full_context)
gen = inference_model.generate(bos_token_id=self.START_TOKEN, pad_token_id=self.STOP_TOKEN, eos_token_id=self.STOP_TOKEN,
max_length=max_tokens, output_attentions=False, return_dict_in_generate=True, use_cache=False,
**hf_generate_kwargs)
return gen.sequences
if __name__ == '__main__':
codegen = AutoregressiveCodegen(256, 10)
torch.save(codegen.state_dict(), 'sample.pth')
#codegen.generate(torch.randn((1,80,120)), torch.randint(0,256,(1,200)))
codegen(torch.randint(0,256, (2,200)),
torch.randn(2,80,120),
torch.randint(0,8192, (2,350)),
torch.tensor([192,350]))
|