File size: 5,756 Bytes
5a958b4
 
 
 
b78ae92
05e06de
 
 
5a958b4
 
 
 
 
 
 
 
 
 
8e94abd
5a958b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b78ae92
5a958b4
 
 
 
 
 
 
 
b78ae92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a958b4
 
 
 
b78ae92
 
 
 
5a958b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b78ae92
 
 
 
5a958b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e94abd
5a958b4
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import einsum

from models.arch_util import CheckpointedXTransformerEncoder
from models.transformer import Transformer
from models.xtransformers import Encoder


def exists(val):
    return val is not None


def masked_mean(t, mask, dim = 1):
    t = t.masked_fill(~mask[:, :, None], 0.)
    return t.sum(dim = 1) / mask.sum(dim = 1)[..., None]

class CLVP(nn.Module):
    """
    CLIP model retrofitted for performing contrastive evaluation between tokenized audio data and the corresponding
    transcribed text.

    Originally from https://github.com/lucidrains/DALLE-pytorch/blob/main/dalle_pytorch/dalle_pytorch.py
    """

    def __init__(
            self,
            *,
            dim_text=512,
            dim_speech=512,
            dim_latent=512,
            num_text_tokens=256,
            text_enc_depth=6,
            text_seq_len=120,
            text_heads=8,
            num_speech_tokens=8192,
            speech_enc_depth=6,
            speech_heads=8,
            speech_seq_len=250,
            text_mask_percentage=0,
            voice_mask_percentage=0,
            wav_token_compression=1024,
            use_xformers=False,
    ):
        super().__init__()
        self.text_emb = nn.Embedding(num_text_tokens, dim_text)
        self.to_text_latent = nn.Linear(dim_text, dim_latent, bias=False)

        self.speech_emb = nn.Embedding(num_speech_tokens, dim_speech)
        self.to_speech_latent = nn.Linear(dim_speech, dim_latent, bias=False)

        if use_xformers:
            self.text_transformer = CheckpointedXTransformerEncoder(
                needs_permute=False,
                exit_permute=False,
                max_seq_len=-1,
                attn_layers=Encoder(
                    dim=dim_text,
                    depth=text_enc_depth,
                    heads=text_heads,
                    ff_dropout=.1,
                    ff_mult=2,
                    attn_dropout=.1,
                    use_rmsnorm=True,
                    ff_glu=True,
                    rotary_pos_emb=True,
                ))
            self.speech_transformer = CheckpointedXTransformerEncoder(
                needs_permute=False,
                exit_permute=False,
                max_seq_len=-1,
                attn_layers=Encoder(
                    dim=dim_speech,
                    depth=speech_enc_depth,
                    heads=speech_heads,
                    ff_dropout=.1,
                    ff_mult=2,
                    attn_dropout=.1,
                    use_rmsnorm=True,
                    ff_glu=True,
                    rotary_pos_emb=True,
                ))
        else:
            self.text_transformer = Transformer(causal=False, seq_len=text_seq_len, dim=dim_text, depth=text_enc_depth,
                                                heads=text_heads)
            self.speech_transformer = Transformer(causal=False, seq_len=speech_seq_len, dim=dim_speech,
                                                  depth=speech_enc_depth, heads=speech_heads)

        self.temperature = nn.Parameter(torch.tensor(1.))
        self.text_mask_percentage = text_mask_percentage
        self.voice_mask_percentage = voice_mask_percentage
        self.wav_token_compression = wav_token_compression
        self.xformers = use_xformers
        if not use_xformers:
            self.text_pos_emb = nn.Embedding(text_seq_len, dim_text)
            self.speech_pos_emb = nn.Embedding(num_speech_tokens, dim_speech)

    def forward(
            self,
            text,
            speech_tokens,
            return_loss=False
    ):
        b, device = text.shape[0], text.device
        if self.training:
            text_mask = torch.rand_like(text.float()) > self.text_mask_percentage
            voice_mask = torch.rand_like(speech_tokens.float()) > self.voice_mask_percentage
        else:
            text_mask = torch.ones_like(text.float()).bool()
            voice_mask = torch.ones_like(speech_tokens.float()).bool()

        text_emb = self.text_emb(text)
        speech_emb = self.speech_emb(speech_tokens)

        if not self.xformers:
            text_emb += self.text_pos_emb(torch.arange(text.shape[1], device=device))
            speech_emb += self.speech_pos_emb(torch.arange(speech_emb.shape[1], device=device))

        enc_text = self.text_transformer(text_emb, mask=text_mask)
        enc_speech = self.speech_transformer(speech_emb, mask=voice_mask)

        text_latents = masked_mean(enc_text, text_mask, dim=1)
        speech_latents = masked_mean(enc_speech, voice_mask, dim=1)

        text_latents = self.to_text_latent(text_latents)
        speech_latents = self.to_speech_latent(speech_latents)

        text_latents, speech_latents = map(lambda t: F.normalize(t, p=2, dim=-1), (text_latents, speech_latents))

        temp = self.temperature.exp()

        if not return_loss:
            sim = einsum('n d, n d -> n', text_latents, speech_latents) * temp
            return sim

        sim = einsum('i d, j d -> i j', text_latents, speech_latents) * temp
        labels = torch.arange(b, device=device)
        loss = (F.cross_entropy(sim, labels) + F.cross_entropy(sim.t(), labels)) / 2
        return loss


if __name__ == '__main__':
    clip = CLVP(text_mask_percentage=.2, voice_mask_percentage=.2)
    clip(torch.randint(0,256,(2,120)),
         torch.tensor([50,100]),
         torch.randint(0,8192,(2,250)),
         torch.tensor([101,102]),
         return_loss=True)
    nonloss = clip(torch.randint(0,256,(2,120)),
         torch.tensor([50,100]),
         torch.randint(0,8192,(2,250)),
         torch.tensor([101,102]),
         return_loss=False)
    print(nonloss.shape)