File size: 28,221 Bytes
5a958b4 f625a9e 5a958b4 05e06de 5a958b4 9ad0f0e 5a958b4 9ad0f0e 5a958b4 9ad0f0e 5a958b4 76c30fe 5a958b4 76c30fe 5a958b4 9ad0f0e 5a958b4 76c30fe 5a958b4 9ad0f0e 76c30fe 5a958b4 76c30fe 5a958b4 84d641c 5a958b4 3214ca0 5a958b4 3214ca0 5a958b4 76c30fe 3214ca0 5a958b4 3214ca0 5a958b4 76c30fe 3214ca0 5a958b4 3214ca0 5a958b4 9ad0f0e 5a958b4 3214ca0 5a958b4 3214ca0 5a958b4 3214ca0 5a958b4 9ad0f0e 5a958b4 9ad0f0e 5a958b4 979ff6e 5a958b4 9ad0f0e 5a958b4 979ff6e 5a958b4 f625a9e 979ff6e 8e94abd 979ff6e 5a958b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 |
import functools
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import GPT2Config, GPT2PreTrainedModel, LogitsProcessorList
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions
from transformers.utils.model_parallel_utils import get_device_map, assert_device_map
from models.arch_util import AttentionBlock
from utils.typical_sampling import TypicalLogitsWarper
def null_position_embeddings(range, dim):
return torch.zeros((range.shape[0], range.shape[1], dim), device=range.device)
class ResBlock(nn.Module):
"""
Basic residual convolutional block that uses GroupNorm.
"""
def __init__(self, chan):
super().__init__()
self.net = nn.Sequential(
nn.Conv1d(chan, chan, kernel_size=3, padding=1),
nn.GroupNorm(chan//8, chan),
nn.ReLU(),
nn.Conv1d(chan, chan, kernel_size=3, padding=1),
nn.GroupNorm(chan//8, chan)
)
def forward(self, x):
return F.relu(self.net(x) + x)
class GPT2InferenceModel(GPT2PreTrainedModel):
def __init__(self, config, gpt, text_pos_emb, embeddings, norm, linear):
super().__init__(config)
self.transformer = gpt
self.text_pos_embedding = text_pos_emb
self.embeddings = embeddings
self.lm_head = nn.Sequential(norm, linear)
# Model parallel
self.model_parallel = False
self.device_map = None
self.cached_mel_emb = None
def parallelize(self, device_map=None):
self.device_map = (
get_device_map(len(self.transformer.h), range(torch.cuda.device_count()))
if device_map is None
else device_map
)
assert_device_map(self.device_map, len(self.transformer.h))
self.transformer.parallelize(self.device_map)
self.lm_head = self.lm_head.to(self.transformer.first_device)
self.model_parallel = True
def deparallelize(self):
self.transformer.deparallelize()
self.transformer = self.transformer.to("cpu")
self.lm_head = self.lm_head.to("cpu")
self.model_parallel = False
torch.cuda.empty_cache()
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def store_mel_emb(self, mel_emb):
self.cached_mel_emb = mel_emb
def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs):
token_type_ids = kwargs.get("token_type_ids", None)
# only last token for inputs_ids if past is defined in kwargs
if past:
input_ids = input_ids[:, -1].unsqueeze(-1)
if token_type_ids is not None:
token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
attention_mask = kwargs.get("attention_mask", None)
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past:
position_ids = position_ids[:, -1].unsqueeze(-1)
else:
position_ids = None
return {
"input_ids": input_ids,
"past_key_values": past,
"use_cache": kwargs.get("use_cache"),
"position_ids": position_ids,
"attention_mask": attention_mask,
"token_type_ids": token_type_ids,
}
def forward(
self,
input_ids=None,
past_key_values=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
labels=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
assert self.cached_mel_emb is not None
assert inputs_embeds is None # Not supported by this inference model.
assert labels is None # Training not supported by this inference model.
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# Create embedding
mel_len = self.cached_mel_emb.shape[1]
if input_ids.shape[1] != 1:
text_inputs = input_ids[:, mel_len:]
text_emb = self.embeddings(text_inputs)
text_emb = text_emb + self.text_pos_embedding(text_emb)
if self.cached_mel_emb.shape[0] != text_emb.shape[0]:
mel_emb = self.cached_mel_emb.repeat_interleave(text_emb.shape[0]//self.cached_mel_emb.shape[0], 0)
else:
mel_emb = self.cached_mel_emb
emb = torch.cat([mel_emb, text_emb], dim=1)
else:
emb = self.embeddings(input_ids)
emb = emb + self.text_pos_embedding.get_fixed_embedding(attention_mask.shape[1]-mel_len, attention_mask.device)
transformer_outputs = self.transformer(
inputs_embeds=emb,
past_key_values=past_key_values,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
# Set device for model parallelism
if self.model_parallel:
torch.cuda.set_device(self.transformer.first_device)
hidden_states = hidden_states.to(self.lm_head.weight.device)
lm_logits = self.lm_head(hidden_states)
if not return_dict:
return (lm_logits,) + transformer_outputs[1:]
return CausalLMOutputWithCrossAttentions(
loss=None,
logits=lm_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
cross_attentions=transformer_outputs.cross_attentions,
)
@staticmethod
def _reorder_cache(past, beam_idx):
"""
This function is used to re-order the :obj:`past_key_values` cache if
:meth:`~transformers.PreTrainedModel.beam_search` or :meth:`~transformers.PreTrainedModel.beam_sample` is
called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step.
"""
return tuple(
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
for layer_past in past
)
class ConditioningEncoder(nn.Module):
def __init__(self,
spec_dim,
embedding_dim,
attn_blocks=6,
num_attn_heads=4,
do_checkpointing=False,
mean=False):
super().__init__()
attn = []
self.init = nn.Conv1d(spec_dim, embedding_dim, kernel_size=1)
for a in range(attn_blocks):
attn.append(AttentionBlock(embedding_dim, num_attn_heads))
self.attn = nn.Sequential(*attn)
self.dim = embedding_dim
self.do_checkpointing = do_checkpointing
self.mean = mean
def forward(self, x):
h = self.init(x)
h = self.attn(h)
if self.mean:
return h.mean(dim=2)
else:
return h[:, :, 0]
class LearnedPositionEmbeddings(nn.Module):
def __init__(self, seq_len, model_dim, init=.02):
super().__init__()
self.emb = nn.Embedding(seq_len, model_dim)
# Initializing this way is standard for GPT-2
self.emb.weight.data.normal_(mean=0.0, std=init)
def forward(self, x):
sl = x.shape[1]
return self.emb(torch.arange(0, sl, device=x.device))
def get_fixed_embedding(self, ind, dev):
return self.emb(torch.tensor([ind], device=dev)).unsqueeze(0)
def build_hf_gpt_transformer(layers, model_dim, heads, max_mel_seq_len, max_text_seq_len, checkpointing):
"""
GPT-2 implemented by the HuggingFace library.
"""
from transformers import GPT2Config, GPT2Model
gpt_config = GPT2Config(vocab_size=256, # Unused.
n_positions=max_mel_seq_len+max_text_seq_len,
n_ctx=max_mel_seq_len+max_text_seq_len,
n_embd=model_dim,
n_layer=layers,
n_head=heads,
gradient_checkpointing=checkpointing,
use_cache=not checkpointing)
gpt = GPT2Model(gpt_config)
# Override the built in positional embeddings
del gpt.wpe
gpt.wpe = functools.partial(null_position_embeddings, dim=model_dim)
# Built-in token embeddings are unused.
del gpt.wte
return gpt, LearnedPositionEmbeddings(max_mel_seq_len, model_dim), LearnedPositionEmbeddings(max_text_seq_len, model_dim),\
None, None
class MelEncoder(nn.Module):
def __init__(self, channels, mel_channels=80, resblocks_per_reduction=2):
super().__init__()
self.channels = channels
self.encoder = nn.Sequential(nn.Conv1d(mel_channels, channels//4, kernel_size=3, padding=1),
nn.Sequential(*[ResBlock(channels//4) for _ in range(resblocks_per_reduction)]),
nn.Conv1d(channels//4, channels//2, kernel_size=3, stride=2, padding=1),
nn.GroupNorm(channels//16, channels//2),
nn.ReLU(),
nn.Sequential(*[ResBlock(channels//2) for _ in range(resblocks_per_reduction)]),
nn.Conv1d(channels//2, channels, kernel_size=3, stride=2, padding=1),
nn.GroupNorm(channels//8, channels),
nn.ReLU(),
nn.Sequential(*[ResBlock(channels) for _ in range(resblocks_per_reduction)]),
)
self.reduction = 4
def forward(self, x):
for e in self.encoder:
x = e(x)
return x.permute(0,2,1)
class UnifiedVoice(nn.Module):
def __init__(self, layers=8, model_dim=512, heads=8, max_text_tokens=120, max_mel_tokens=250, max_conditioning_inputs=1,
mel_length_compression=1024, number_text_tokens=256,
start_text_token=None, number_mel_codes=8194, start_mel_token=8192,
stop_mel_token=8193, train_solo_embeddings=False, use_mel_codes_as_input=True,
checkpointing=True, average_conditioning_embeddings=False,
types=1):
"""
Args:
layers: Number of layers in transformer stack.
model_dim: Operating dimensions of the transformer
heads: Number of transformer heads. Must be divisible by model_dim. Recommend model_dim//64
max_text_tokens: Maximum number of text tokens that will be encountered by model.
max_mel_tokens: Maximum number of MEL tokens that will be encountered by model.
max_conditioning_inputs: Maximum number of conditioning inputs provided to the model. If (1), conditioning input can be of format (b,80,s), otherwise (b,n,80,s).
mel_length_compression: The factor between <number_input_samples> and <mel_tokens>. Used to compute MEL code padding given wav input length.
number_text_tokens:
start_text_token:
stop_text_token:
number_mel_codes:
start_mel_token:
stop_mel_token:
train_solo_embeddings:
use_mel_codes_as_input:
checkpointing:
average_conditioning_embeddings: Whether or not conditioning embeddings should be averaged, instead of fed piecewise into the model.
"""
super().__init__()
self.number_text_tokens = number_text_tokens
self.start_text_token = number_text_tokens * types if start_text_token is None else start_text_token
self.stop_text_token = 0
self.number_mel_codes = number_mel_codes
self.start_mel_token = start_mel_token
self.stop_mel_token = stop_mel_token
self.layers = layers
self.heads = heads
self.max_mel_tokens = max_mel_tokens
self.max_text_tokens = max_text_tokens
self.model_dim = model_dim
self.max_conditioning_inputs = max_conditioning_inputs
self.mel_length_compression = mel_length_compression
self.conditioning_encoder = ConditioningEncoder(80, model_dim, num_attn_heads=heads)
self.average_conditioning_embeddings = average_conditioning_embeddings
self.text_embedding = nn.Embedding(self.number_text_tokens*types+1, model_dim)
if use_mel_codes_as_input:
self.mel_embedding = nn.Embedding(self.number_mel_codes, model_dim)
else:
self.mel_embedding = MelEncoder(model_dim, resblocks_per_reduction=1)
self.gpt, self.mel_pos_embedding, self.text_pos_embedding, self.mel_layer_pos_embedding, self.text_layer_pos_embedding = \
build_hf_gpt_transformer(layers, model_dim, heads, self.max_mel_tokens+2+self.max_conditioning_inputs, self.max_text_tokens+2, checkpointing)
if train_solo_embeddings:
self.mel_solo_embedding = nn.Parameter(torch.randn(1, 1, model_dim) * .02, requires_grad=True)
self.text_solo_embedding = nn.Parameter(torch.randn(1, 1, model_dim) * .02, requires_grad=True)
else:
self.mel_solo_embedding = 0
self.text_solo_embedding = 0
self.final_norm = nn.LayerNorm(model_dim)
self.text_head = nn.Linear(model_dim, self.number_text_tokens*types+1)
self.mel_head = nn.Linear(model_dim, self.number_mel_codes)
# Initialize the embeddings per the GPT-2 scheme
embeddings = [self.text_embedding]
if use_mel_codes_as_input:
embeddings.append(self.mel_embedding)
for module in embeddings:
module.weight.data.normal_(mean=0.0, std=.02)
def build_aligned_inputs_and_targets(self, input, start_token, stop_token):
inp = F.pad(input, (1,0), value=start_token)
tar = F.pad(input, (0,1), value=stop_token)
return inp, tar
def set_mel_padding(self, mel_input_tokens, wav_lengths):
"""
Given mel tokens that are derived from a padded audio clip and the actual lengths of each batch element in
that audio clip, reformats the tokens with STOP_MEL_TOKEN in place of the zero padding. This is required
preformatting to create a working TTS model.
"""
# Set padding areas within MEL (currently it is coded with the MEL code for <zero>).
mel_lengths = torch.div(wav_lengths, self.mel_length_compression, rounding_mode='trunc')
for b in range(len(mel_lengths)):
actual_end = mel_lengths[b] + 1 # Due to the convolutional nature of how these tokens are generated, it would be best if the model predicts a token past the actual last token.
if actual_end < mel_input_tokens.shape[-1]:
mel_input_tokens[b, actual_end:] = self.stop_mel_token
return mel_input_tokens
def get_logits(self, speech_conditioning_inputs, first_inputs, first_head, second_inputs=None, second_head=None, get_attns=False, return_latent=False):
if second_inputs is not None:
emb = torch.cat([speech_conditioning_inputs, first_inputs, second_inputs], dim=1)
else:
emb = torch.cat([speech_conditioning_inputs, first_inputs], dim=1)
gpt_out = self.gpt(inputs_embeds=emb, return_dict=True, output_attentions=get_attns)
if get_attns:
return gpt_out.attentions
enc = gpt_out.last_hidden_state[:, 1:] # The first logit is tied to the speech_conditioning_input
enc = self.final_norm(enc)
if return_latent:
return enc[:, speech_conditioning_inputs.shape[1]:speech_conditioning_inputs.shape[1]+first_inputs.shape[1]], enc[:, -second_inputs.shape[1]:]
first_logits = enc[:, :first_inputs.shape[1]]
first_logits = first_head(first_logits)
first_logits = first_logits.permute(0,2,1)
if second_inputs is not None:
second_logits = enc[:, -second_inputs.shape[1]:]
second_logits = second_head(second_logits)
second_logits = second_logits.permute(0,2,1)
return first_logits, second_logits
else:
return first_logits
def forward(self, speech_conditioning_input, text_inputs, text_lengths, mel_codes, wav_lengths, types=None, text_first=True, raw_mels=None, return_attentions=False,
return_latent=False, clip_inputs=True):
"""
Forward pass that uses both text and voice in either text conditioning mode or voice conditioning mode
(actuated by `text_first`).
speech_conditioning_input: MEL float tensor, (b,80,s)
text_inputs: long tensor, (b,t)
text_lengths: long tensor, (b,)
mel_inputs: long tensor, (b,m)
wav_lengths: long tensor, (b,)
raw_mels: MEL float tensor (b,80,s)
If return_attentions is specified, only logits are returned.
If return_latent is specified, loss & logits are not computed or returned. Only the predicted latents are returned.
If clip_inputs is True, the inputs will be clipped to the smallest input size across each input modality.
"""
# Types are expressed by expanding the text embedding space.
if types is not None:
text_inputs = text_inputs * (1+types).unsqueeze(-1)
if clip_inputs:
# This model will receive micro-batches with a ton of padding for both the text and MELs. Ameliorate this by
# chopping the inputs by the maximum actual length.
max_text_len = text_lengths.max()
text_inputs = text_inputs[:, :max_text_len]
max_mel_len = wav_lengths.max() // self.mel_length_compression
mel_codes = mel_codes[:, :max_mel_len]
if raw_mels is not None:
raw_mels = raw_mels[:, :, :max_mel_len*4]
mel_codes = self.set_mel_padding(mel_codes, wav_lengths)
text_inputs = F.pad(text_inputs, (0,1), value=self.stop_text_token)
mel_codes = F.pad(mel_codes, (0,1), value=self.stop_mel_token)
speech_conditioning_input = speech_conditioning_input.unsqueeze(1) if len(speech_conditioning_input.shape) == 3 else speech_conditioning_input
conds = []
for j in range(speech_conditioning_input.shape[1]):
conds.append(self.conditioning_encoder(speech_conditioning_input[:, j]))
conds = torch.stack(conds, dim=1)
if self.average_conditioning_embeddings:
conds = conds.mean(dim=1).unsqueeze(1)
text_inputs, text_targets = self.build_aligned_inputs_and_targets(text_inputs, self.start_text_token, self.stop_text_token)
text_emb = self.text_embedding(text_inputs) + self.text_pos_embedding(text_inputs)
mel_codes, mel_targets = self.build_aligned_inputs_and_targets(mel_codes, self.start_mel_token, self.stop_mel_token)
if raw_mels is not None:
mel_inp = F.pad(raw_mels, (0, 8))
else:
mel_inp = mel_codes
mel_emb = self.mel_embedding(mel_inp)
mel_emb = mel_emb + self.mel_pos_embedding(mel_codes)
if text_first:
text_logits, mel_logits = self.get_logits(conds, text_emb, self.text_head, mel_emb, self.mel_head, get_attns=return_attentions, return_latent=return_latent)
if return_latent:
return mel_logits[:, :-2] # Despite the name, these are not logits. Strip off the two tokens added by this forward pass.
else:
mel_logits, text_logits = self.get_logits(conds, mel_emb, self.mel_head, text_emb, self.text_head, get_attns=return_attentions, return_latent=return_latent)
if return_latent:
return text_logits[:, :-2] # Despite the name, these are not logits. Strip off the two tokens added by this forward pass.
if return_attentions:
return mel_logits
loss_text = F.cross_entropy(text_logits, text_targets.long())
loss_mel = F.cross_entropy(mel_logits, mel_targets.long())
return loss_text.mean(), loss_mel.mean(), mel_logits
def text_forward(self, speech_conditioning_input, text_inputs, text_lengths):
"""
Performs autoregressive modeling on only text. Still requires a speech_conditioning_input due to the way the
model inputs are formatted. Just provide any audio clip (arguably, zeros could be provided).
"""
assert self.max_text_tokens >= text_inputs.shape[1], f'{text_inputs.shape[1]}'
# This model will receive micro-batches with a ton of padding for both the text and MELs. Ameliorate this by
# chopping the inputs by the maximum actual length.
max_text_len = text_lengths.max()
text_inputs = F.pad(text_inputs[:, :max_text_len], (0,1), value=self.stop_text_token)
speech_conditioning_input = speech_conditioning_input.unsqueeze(1) if len(speech_conditioning_input.shape) == 3 else speech_conditioning_input
conds = []
for j in range(speech_conditioning_input.shape[1]):
conds.append(self.conditioning_encoder(speech_conditioning_input[:, j]))
conds = torch.stack(conds, dim=1)
if self.average_conditioning_embeddings:
conds = conds.mean(dim=1).unsqueeze(1)
text_inputs, text_targets = self.build_aligned_inputs_and_targets(text_inputs, self.start_text_token, self.stop_text_token)
text_emb = self.text_embedding(text_inputs) + self.text_pos_embedding(text_inputs) + self.text_solo_embedding
text_logits = self.get_logits(conds, text_emb, self.text_head)
loss_text = F.cross_entropy(text_logits, text_targets.long())
return loss_text.mean()
def speech_forward(self, speech_conditioning_input, mel_codes, wav_lengths, raw_mels=None):
"""
Performs autoregressive modeling on only speech data.
"""
assert self.max_mel_tokens >= mel_codes.shape[1], f'{mel_codes.shape[1]}'
# This model will receive micro-batches with a ton of padding for both the text and MELs. Ameliorate this by
# chopping the inputs by the maximum actual length.
max_mel_len = wav_lengths.max() // self.mel_length_compression
mel_codes = F.pad(mel_codes[:, :max_mel_len], (0,1), value=self.stop_mel_token)
mel_codes = self.set_mel_padding(mel_codes, wav_lengths)
if raw_mels is not None:
raw_mels = raw_mels[:, :, :max_mel_len*4]
speech_conditioning_input = speech_conditioning_input.unsqueeze(1) if len(speech_conditioning_input.shape) == 3 else speech_conditioning_input
conds = []
for j in range(speech_conditioning_input.shape[1]):
conds.append(self.conditioning_encoder(speech_conditioning_input[:, j]))
conds = torch.stack(conds, dim=1)
if self.average_conditioning_embeddings:
conds = conds.mean(dim=1).unsqueeze(1)
mel_codes, mel_targets = self.build_aligned_inputs_and_targets(mel_codes, self.start_mel_token, self.stop_mel_token)
if raw_mels is not None:
mel_inp = F.pad(raw_mels, (0, 4))
else:
mel_inp = mel_codes
mel_emb = self.mel_embedding(mel_inp)
mel_emb = mel_emb + self.mel_pos_embedding(mel_codes) + self.mel_solo_embedding
mel_logits = self.get_logits(conds, mel_emb, self.mel_head)
loss_mel = F.cross_entropy(mel_logits, mel_targets.long())
return loss_mel.mean()
def inference_speech(self, speech_conditioning_input, text_inputs, input_tokens=None, num_return_sequences=1,
max_generate_length=None, typical_sampling=False, typical_mass=.9, **hf_generate_kwargs):
seq_length = self.max_mel_tokens + self.max_text_tokens + 2
if not hasattr(self, 'inference_model'):
# TODO: Decouple gpt_config from this inference model.
gpt_config = GPT2Config(vocab_size=self.max_mel_tokens,
n_positions=seq_length,
n_ctx=seq_length,
n_embd=self.model_dim,
n_layer=self.layers,
n_head=self.heads,
gradient_checkpointing=False,
use_cache=True)
self.inference_model = GPT2InferenceModel(gpt_config, self.gpt, self.mel_pos_embedding, self.mel_embedding, self.final_norm, self.mel_head)
self.gpt.wte = self.mel_embedding
text_inputs = F.pad(text_inputs, (0, 1), value=self.stop_text_token)
text_inputs, text_targets = self.build_aligned_inputs_and_targets(text_inputs, self.start_text_token, self.stop_text_token)
text_emb = self.text_embedding(text_inputs) + self.text_pos_embedding(text_inputs)
speech_conditioning_input = speech_conditioning_input.unsqueeze(1) if len(speech_conditioning_input.shape) == 3 else speech_conditioning_input
conds = []
for j in range(speech_conditioning_input.shape[1]):
conds.append(self.conditioning_encoder(speech_conditioning_input[:, j]))
conds = torch.stack(conds, dim=1)
if self.average_conditioning_embeddings:
conds = conds.mean(dim=1).unsqueeze(1)
emb = torch.cat([conds, text_emb], dim=1)
self.inference_model.store_mel_emb(emb)
fake_inputs = torch.full((emb.shape[0], conds.shape[1] + emb.shape[1],), fill_value=1, dtype=torch.long,
device=text_inputs.device)
fake_inputs[:, -1] = self.start_mel_token
trunc_index = fake_inputs.shape[1]
if input_tokens is None:
inputs = fake_inputs
else:
assert num_return_sequences % input_tokens.shape[0] == 0, "The number of return sequences must be divisible by the number of input sequences"
fake_inputs = fake_inputs.repeat(num_return_sequences, 1)
input_tokens = input_tokens.repeat(num_return_sequences // input_tokens.shape[0], 1)
inputs = torch.cat([fake_inputs, input_tokens], dim=1)
logits_processor = LogitsProcessorList([TypicalLogitsWarper(mass=typical_mass)]) if typical_sampling else LogitsProcessorList()
max_length = trunc_index + self.max_mel_tokens - 1 if max_generate_length is None else trunc_index + max_generate_length
gen = self.inference_model.generate(inputs, bos_token_id=self.start_mel_token, pad_token_id=self.stop_mel_token, eos_token_id=self.stop_mel_token,
max_length=max_length, logits_processor=logits_processor,
num_return_sequences=num_return_sequences, **hf_generate_kwargs)
return gen[:, trunc_index:]
if __name__ == '__main__':
gpt = UnifiedVoice(model_dim=256, heads=4, train_solo_embeddings=True, use_mel_codes_as_input=True, max_conditioning_inputs=4)
l = gpt(torch.randn(2, 3, 80, 800),
torch.randint(high=120, size=(2,120)),
torch.tensor([32, 120]),
torch.randint(high=8192, size=(2,250)),
torch.tensor([250*256,195*256]))
gpt.text_forward(torch.randn(2,80,800), torch.randint(high=50, size=(2,80)), torch.tensor([32, 80]))
|