|
import argparse |
|
import os |
|
import random |
|
from urllib import request |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
import torchaudio |
|
import progressbar |
|
import ocotillo |
|
|
|
from models.diffusion_decoder import DiffusionTts |
|
from models.autoregressive import UnifiedVoice |
|
from tqdm import tqdm |
|
|
|
from models.arch_util import TorchMelSpectrogram |
|
from models.text_voice_clip import VoiceCLIP |
|
from models.vocoder import UnivNetGenerator |
|
from utils.audio import load_audio, wav_to_univnet_mel, denormalize_tacotron_mel |
|
from utils.diffusion import SpacedDiffusion, space_timesteps, get_named_beta_schedule |
|
from utils.tokenizer import VoiceBpeTokenizer, lev_distance |
|
|
|
|
|
pbar = None |
|
def download_models(): |
|
MODELS = { |
|
'clip.pth': 'https://huggingface.co/jbetker/tortoise-tts-clip/resolve/main/pytorch-model.bin', |
|
'diffusion.pth': 'https://huggingface.co/jbetker/tortoise-tts-diffusion-v1/resolve/main/pytorch-model.bin', |
|
'autoregressive.pth': 'https://huggingface.co/jbetker/tortoise-tts-autoregressive/resolve/main/pytorch-model.bin' |
|
} |
|
os.makedirs('.models', exist_ok=True) |
|
def show_progress(block_num, block_size, total_size): |
|
global pbar |
|
if pbar is None: |
|
pbar = progressbar.ProgressBar(maxval=total_size) |
|
pbar.start() |
|
|
|
downloaded = block_num * block_size |
|
if downloaded < total_size: |
|
pbar.update(downloaded) |
|
else: |
|
pbar.finish() |
|
pbar = None |
|
for model_name, url in MODELS.items(): |
|
if os.path.exists(f'.models/{model_name}'): |
|
continue |
|
print(f'Downloading {model_name} from {url}...') |
|
request.urlretrieve(url, f'.models/{model_name}', show_progress) |
|
print('Done.') |
|
|
|
|
|
def load_discrete_vocoder_diffuser(trained_diffusion_steps=4000, desired_diffusion_steps=200, cond_free=True, cond_free_k=1): |
|
""" |
|
Helper function to load a GaussianDiffusion instance configured for use as a vocoder. |
|
""" |
|
return SpacedDiffusion(use_timesteps=space_timesteps(trained_diffusion_steps, [desired_diffusion_steps]), model_mean_type='epsilon', |
|
model_var_type='learned_range', loss_type='mse', betas=get_named_beta_schedule('linear', trained_diffusion_steps), |
|
conditioning_free=cond_free, conditioning_free_k=cond_free_k) |
|
|
|
|
|
def load_conditioning(clip, cond_length=132300): |
|
gap = clip.shape[-1] - cond_length |
|
if gap < 0: |
|
clip = F.pad(clip, pad=(0, abs(gap))) |
|
elif gap > 0: |
|
rand_start = random.randint(0, gap) |
|
clip = clip[:, rand_start:rand_start + cond_length] |
|
mel_clip = TorchMelSpectrogram()(clip.unsqueeze(0)).squeeze(0) |
|
return mel_clip.unsqueeze(0).cuda() |
|
|
|
|
|
def fix_autoregressive_output(codes, stop_token): |
|
""" |
|
This function performs some padding on coded audio that fixes a mismatch issue between what the diffusion model was |
|
trained on and what the autoregressive code generator creates (which has no padding or end). |
|
This is highly specific to the DVAE being used, so this particular coding will not necessarily work if used with |
|
a different DVAE. This can be inferred by feeding a audio clip padded with lots of zeros on the end through the DVAE |
|
and copying out the last few codes. |
|
|
|
Failing to do this padding will produce speech with a harsh end that sounds like "BLAH" or similar. |
|
""" |
|
|
|
stop_token_indices = (codes == stop_token).nonzero() |
|
if len(stop_token_indices) == 0: |
|
print("No stop tokens found, enjoy that output of yours!") |
|
return codes |
|
else: |
|
codes[stop_token_indices] = 83 |
|
stm = stop_token_indices.min().item() |
|
codes[stm:] = 83 |
|
if stm - 3 < codes.shape[0]: |
|
codes[-3] = 45 |
|
codes[-2] = 45 |
|
codes[-1] = 248 |
|
|
|
return codes |
|
|
|
|
|
def do_spectrogram_diffusion(diffusion_model, diffuser, mel_codes, conditioning_input, temperature=1): |
|
""" |
|
Uses the specified diffusion model and DVAE model to convert the provided MEL & conditioning inputs into an audio clip. |
|
""" |
|
with torch.no_grad(): |
|
cond_mel = wav_to_univnet_mel(conditioning_input.squeeze(1), do_normalization=False) |
|
|
|
msl = mel_codes.shape[-1] |
|
dsl = 32 |
|
gap = dsl - (msl % dsl) |
|
if gap > 0: |
|
mel = torch.nn.functional.pad(mel_codes, (0, gap)) |
|
|
|
output_shape = (mel.shape[0], 100, mel.shape[-1]*4) |
|
precomputed_embeddings = diffusion_model.timestep_independent(mel_codes, cond_mel) |
|
|
|
noise = torch.randn(output_shape, device=mel_codes.device) * temperature |
|
mel = diffuser.p_sample_loop(diffusion_model, output_shape, noise=noise, |
|
model_kwargs={'precomputed_aligned_embeddings': precomputed_embeddings}) |
|
return denormalize_tacotron_mel(mel)[:,:,:msl*4] |
|
|
|
|
|
class TextToSpeech: |
|
def __init__(self, autoregressive_batch_size=32): |
|
self.autoregressive_batch_size = autoregressive_batch_size |
|
self.tokenizer = VoiceBpeTokenizer() |
|
download_models() |
|
|
|
self.autoregressive = UnifiedVoice(max_mel_tokens=300, max_text_tokens=200, max_conditioning_inputs=2, layers=30, |
|
model_dim=1024, |
|
heads=16, number_text_tokens=256, start_text_token=255, checkpointing=False, |
|
train_solo_embeddings=False, |
|
average_conditioning_embeddings=True).cpu().eval() |
|
self.autoregressive.load_state_dict(torch.load('.models/autoregressive.pth')) |
|
|
|
self.clip = VoiceCLIP(dim_text=512, dim_speech=512, dim_latent=512, num_text_tokens=256, text_enc_depth=12, |
|
text_seq_len=350, text_heads=8, |
|
num_speech_tokens=8192, speech_enc_depth=12, speech_heads=8, speech_seq_len=430, |
|
use_xformers=True).cpu().eval() |
|
self.clip.load_state_dict(torch.load('.models/clip.pth')) |
|
|
|
self.diffusion = DiffusionTts(model_channels=512, in_channels=100, out_channels=200, in_latent_channels=1024, |
|
channel_mult=[1, 2, 3, 4], num_res_blocks=[3, 3, 3, 3], |
|
token_conditioning_resolutions=[1, 4, 8], |
|
dropout=0, attention_resolutions=[4, 8], num_heads=8, kernel_size=3, scale_factor=2, |
|
time_embed_dim_multiplier=4, unconditioned_percentage=0, conditioning_dim_factor=2, |
|
conditioning_expansion=1).cpu().eval() |
|
self.diffusion.load_state_dict(torch.load('.models/diffusion.pth')) |
|
|
|
self.vocoder = UnivNetGenerator().cpu() |
|
self.vocoder.load_state_dict(torch.load('.models/vocoder.pth')['model_g']) |
|
self.vocoder.eval(inference=True) |
|
|
|
def tts(self, text, voice_samples, k=1, |
|
|
|
num_autoregressive_samples=512, temperature=.5, length_penalty=2, repetition_penalty=2.0, top_p=.5, |
|
typical_sampling=False, typical_mass=.9, |
|
|
|
diffusion_iterations=100, cond_free=True, cond_free_k=2, diffusion_temperature=.7,): |
|
text = torch.IntTensor(self.tokenizer.encode(text)).unsqueeze(0).cuda() |
|
text = F.pad(text, (0, 1)) |
|
|
|
conds = [] |
|
if not isinstance(voice_samples, list): |
|
voice_samples = [voice_samples] |
|
for vs in voice_samples: |
|
conds.append(load_conditioning(vs)) |
|
conds = torch.stack(conds, dim=1) |
|
cond_diffusion = voice_samples[0].cuda() |
|
|
|
if cond_diffusion.shape[-1] < 88200: |
|
cond_diffusion = F.pad(cond_diffusion, (0, 88200-cond_diffusion.shape[-1])) |
|
else: |
|
cond_diffusion = cond_diffusion[:, :88200] |
|
|
|
diffuser = load_discrete_vocoder_diffuser(desired_diffusion_steps=diffusion_iterations, cond_free=cond_free, cond_free_k=cond_free_k) |
|
|
|
with torch.no_grad(): |
|
samples = [] |
|
num_batches = num_autoregressive_samples // self.autoregressive_batch_size |
|
stop_mel_token = self.autoregressive.stop_mel_token |
|
self.autoregressive = self.autoregressive.cuda() |
|
for b in tqdm(range(num_batches)): |
|
codes = self.autoregressive.inference_speech(conds, text, |
|
do_sample=True, |
|
top_p=top_p, |
|
temperature=temperature, |
|
num_return_sequences=self.autoregressive_batch_size, |
|
length_penalty=length_penalty, |
|
repetition_penalty=repetition_penalty, |
|
typical_sampling=typical_sampling, |
|
typical_mass=typical_mass) |
|
padding_needed = 250 - codes.shape[1] |
|
codes = F.pad(codes, (0, padding_needed), value=stop_mel_token) |
|
samples.append(codes) |
|
self.autoregressive = self.autoregressive.cpu() |
|
|
|
clip_results = [] |
|
self.clip = self.clip.cuda() |
|
for batch in samples: |
|
for i in range(batch.shape[0]): |
|
batch[i] = fix_autoregressive_output(batch[i], stop_mel_token) |
|
clip_results.append(self.clip(text.repeat(batch.shape[0], 1), batch, return_loss=False)) |
|
clip_results = torch.cat(clip_results, dim=0) |
|
samples = torch.cat(samples, dim=0) |
|
best_results = samples[torch.topk(clip_results, k=k).indices] |
|
self.clip = self.clip.cpu() |
|
del samples |
|
|
|
print("Performing vocoding..") |
|
wav_candidates = [] |
|
self.diffusion = self.diffusion.cuda() |
|
self.vocoder = self.vocoder.cuda() |
|
for b in range(best_results.shape[0]): |
|
code = best_results[b].unsqueeze(0) |
|
mel = do_spectrogram_diffusion(self.diffusion, diffuser, code, cond_diffusion, temperature=diffusion_temperature) |
|
wav = self.vocoder.inference(mel) |
|
wav_candidates.append(wav.cpu()) |
|
self.diffusion = self.diffusion.cpu() |
|
self.vocoder = self.vocoder.cpu() |
|
|
|
if len(wav_candidates) > 1: |
|
return wav_candidates |
|
return wav_candidates[0] |
|
|
|
def refine_for_intellibility(self, wav_candidates, corresponding_codes, output_path): |
|
""" |
|
Further refine the remaining candidates using a ASR model to pick out the ones that are the most understandable. |
|
TODO: finish this function |
|
:param wav_candidates: |
|
:return: |
|
""" |
|
transcriber = ocotillo.Transcriber(on_cuda=True) |
|
transcriptions = transcriber.transcribe_batch(torch.cat(wav_candidates, dim=0).squeeze(1), 24000) |
|
best = 99999999 |
|
for i, transcription in enumerate(transcriptions): |
|
dist = lev_distance(transcription, args.text.lower()) |
|
if dist < best: |
|
best = dist |
|
best_codes = corresponding_codes[i].unsqueeze(0) |
|
best_wav = wav_candidates[i] |
|
del transcriber |
|
torchaudio.save(os.path.join(output_path, f'{voice}_poor.wav'), best_wav.squeeze(0).cpu(), 24000) |
|
|
|
|
|
mel = do_spectrogram_diffusion(diffusion, final_diffuser, best_codes, cond_diffusion, mean=False) |
|
wav = vocoder.inference(mel) |
|
torchaudio.save(os.path.join(args.output_path, f'{voice}.wav'), wav.squeeze(0).cpu(), 24000) |