|
import argparse |
|
import os |
|
import torch |
|
|
|
from api import TextToSpeech |
|
from tortoise.utils.audio import load_audio, get_voices |
|
|
|
""" |
|
Dumps the conditioning latents for the specified voice to disk. These are expressive latents which can be used for |
|
other ML models, or can be augmented manually and fed back into Tortoise to affect vocal qualities. |
|
""" |
|
if __name__ == '__main__': |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--voice', type=str, help='Selects the voice to convert to conditioning latents', default='pat2') |
|
parser.add_argument('--output_path', type=str, help='Where to store outputs.', default='../results/conditioning_latents') |
|
args = parser.parse_args() |
|
os.makedirs(args.output_path, exist_ok=True) |
|
|
|
tts = TextToSpeech() |
|
voices = get_voices() |
|
selected_voices = args.voice.split(',') |
|
for voice in selected_voices: |
|
cond_paths = voices[voice] |
|
conds = [] |
|
for cond_path in cond_paths: |
|
c = load_audio(cond_path, 22050) |
|
conds.append(c) |
|
conditioning_latents = tts.get_conditioning_latents(conds) |
|
torch.save(conditioning_latents, os.path.join(args.output_path, f'{voice}.pth')) |
|
|
|
|