File size: 11,871 Bytes
2557c6e 2745124 2557c6e afceeed de858d1 2557c6e afceeed de858d1 2745124 afceeed 829c2a5 3f51080 afceeed 3f51080 afceeed 3f51080 829c2a5 3f51080 829c2a5 3f51080 829c2a5 606d9c1 829c2a5 3f51080 829c2a5 606d9c1 3f51080 606d9c1 3f51080 829c2a5 3f51080 829c2a5 3f51080 829c2a5 3f51080 829c2a5 606d9c1 afceeed 829c2a5 afceeed 829c2a5 606d9c1 829c2a5 606d9c1 829c2a5 606d9c1 afceeed 606d9c1 afceeed 2557c6e afceeed de858d1 afceeed 606d9c1 de858d1 606d9c1 de858d1 2745124 de858d1 2745124 de858d1 2745124 53c0486 2745124 53c0486 de858d1 2557c6e afceeed 2557c6e de858d1 2557c6e de858d1 53c0486 2557c6e de858d1 2557c6e afceeed 2557c6e afceeed 606d9c1 afceeed de858d1 2557c6e de858d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
from typing import Dict, Any
import os
import shutil
from pathlib import Path
import time
from datetime import datetime
import argparse
from loguru import logger
from hyvideo.utils.file_utils import save_videos_grid
from hyvideo.inference import HunyuanVideoSampler
from hyvideo.constants import NEGATIVE_PROMPT
# Configure logger
logger.add("handler_debug.log", rotation="500 MB")
def setup_vae_path(vae_path: Path) -> Path:
"""Create a temporary directory with correctly named VAE config file"""
tmp_vae_dir = Path("/tmp/vae")
if tmp_vae_dir.exists():
shutil.rmtree(tmp_vae_dir)
tmp_vae_dir.mkdir(parents=True)
# Copy files to temp directory
logger.info(f"Setting up VAE in temporary directory: {tmp_vae_dir}")
# Copy and rename config file
original_config = vae_path / "hunyuan-video-t2v-720p_vae_config.json"
new_config = tmp_vae_dir / "config.json"
shutil.copy2(original_config, new_config)
logger.info(f"Copied VAE config from {original_config} to {new_config}")
# Copy model file
original_model = vae_path / "pytorch_model.pt"
new_model = tmp_vae_dir / "pytorch_model.pt"
shutil.copy2(original_model, new_model)
logger.info(f"Copied VAE model from {original_model} to {new_model}")
return tmp_vae_dir
def get_default_args():
"""Create default arguments instead of parsing from command line"""
parser = argparse.ArgumentParser()
# Model configuration
parser.add_argument("--model", type=str, default="HYVideo-T/2-cfgdistill")
parser.add_argument("--model-resolution", type=str, default="720p", choices=["540p", "720p"])
parser.add_argument("--latent-channels", type=int, default=16)
parser.add_argument("--precision", type=str, default="bf16", choices=["bf16", "fp32", "fp16"])
parser.add_argument("--rope-theta", type=int, default=256)
parser.add_argument("--load-key", type=str, default="module")
# VAE settings
parser.add_argument("--vae", type=str, default="884-16c-hy")
parser.add_argument("--vae-precision", type=str, default="fp16")
parser.add_argument("--vae-tiling", action="store_true", default=True)
# Text encoder settings
parser.add_argument("--text-encoder", type=str, default="llm")
parser.add_argument("--text-encoder-precision", type=str, default="fp16")
parser.add_argument("--text-states-dim", type=int, default=4096)
parser.add_argument("--text-len", type=int, default=256)
parser.add_argument("--tokenizer", type=str, default="llm")
# Prompt template settings
parser.add_argument("--prompt-template", type=str, default="dit-llm-encode")
parser.add_argument("--prompt-template-video", type=str, default="dit-llm-encode-video")
# Additional text encoder settings
parser.add_argument("--hidden-state-skip-layer", type=int, default=2)
parser.add_argument("--apply-final-norm", action="store_true")
parser.add_argument("--text-encoder-2", type=str, default="clipL")
parser.add_argument("--text-encoder-precision-2", type=str, default="fp16")
parser.add_argument("--text-states-dim-2", type=int, default=768)
parser.add_argument("--tokenizer-2", type=str, default="clipL")
parser.add_argument("--text-len-2", type=int, default=77)
# Model architecture settings
parser.add_argument("--hidden-size", type=int, default=1024)
parser.add_argument("--heads-num", type=int, default=16)
parser.add_argument("--layers-num", type=int, default=24)
parser.add_argument("--mlp-ratio", type=float, default=4.0)
parser.add_argument("--use-guidance-net", action="store_true", default=True)
# Inference settings
parser.add_argument("--denoise-type", type=str, default="flow")
parser.add_argument("--flow-shift", type=float, default=7.0)
parser.add_argument("--flow-reverse", action="store_true", default=True)
parser.add_argument("--flow-solver", type=str, default="euler")
parser.add_argument("--use-linear-quadratic-schedule", action="store_true")
parser.add_argument("--linear-schedule-end", type=int, default=25)
# Hardware settings
parser.add_argument("--use-cpu-offload", action="store_true", default=False)
parser.add_argument("--batch-size", type=int, default=1)
parser.add_argument("--infer-steps", type=int, default=50)
parser.add_argument("--disable-autocast", action="store_true")
# Output settings
parser.add_argument("--save-path", type=str, default="outputs")
parser.add_argument("--save-path-suffix", type=str, default="")
parser.add_argument("--name-suffix", type=str, default="")
# Generation settings
parser.add_argument("--num-videos", type=int, default=1)
parser.add_argument("--video-size", nargs="+", type=int, default=[720, 1280])
parser.add_argument("--video-length", type=int, default=129)
parser.add_argument("--prompt", type=str, default=None)
parser.add_argument("--seed-type", type=str, default="auto", choices=["file", "random", "fixed", "auto"])
parser.add_argument("--seed", type=int, default=None)
parser.add_argument("--neg-prompt", type=str, default="")
parser.add_argument("--cfg-scale", type=float, default=1.0)
parser.add_argument("--embedded-cfg-scale", type=float, default=6.0)
parser.add_argument("--reproduce", action="store_true")
# Parallel settings
parser.add_argument("--ulysses-degree", type=int, default=1)
parser.add_argument("--ring-degree", type=int, default=1)
# Parse with empty args list to avoid reading sys.argv
args = parser.parse_args([])
return args
class EndpointHandler:
def __init__(self, path: str = ""):
"""Initialize the handler with model path and default config."""
logger.info(f"Initializing EndpointHandler with path: {path}")
# Use default args instead of parsing from command line
self.args = get_default_args()
# Convert path to absolute path if not already
path = str(Path(path).absolute())
logger.info(f"Absolute path: {path}")
# Set up model paths
self.args.model_base = path
# Set paths for model components
dit_weight_path = Path(path) / "hunyuan-video-t2v-720p/transformers/mp_rank_00_model_states.pt"
original_vae_path = Path(path) / "hunyuan-video-t2v-720p/vae"
# Log all critical paths
logger.info(f"Model base path: {self.args.model_base}")
logger.info(f"DiT weight path: {dit_weight_path}")
logger.info(f"Original VAE path: {original_vae_path}")
# Verify paths exist
logger.info("Checking if paths exist:")
logger.info(f"DiT weight exists: {dit_weight_path.exists()}")
logger.info(f"VAE path exists: {original_vae_path.exists()}")
if original_vae_path.exists():
logger.info(f"VAE path contents: {list(original_vae_path.glob('*'))}")
# Set up VAE in temporary directory with correct file names
tmp_vae_path = setup_vae_path(original_vae_path)
# Override the VAE path in constants to use our temporary directory
from hyvideo.constants import VAE_PATH, TEXT_ENCODER_PATH, TOKENIZER_PATH
VAE_PATH["884-16c-hy"] = str(tmp_vae_path)
logger.info(f"Updated VAE_PATH to: {VAE_PATH['884-16c-hy']}")
# Update text encoder paths to use absolute paths
text_encoder_path = str(Path(path) / "text_encoder")
text_encoder_2_path = str(Path(path) / "text_encoder_2")
# Update both text encoder and tokenizer paths
TEXT_ENCODER_PATH.update({
"llm": text_encoder_path,
"clipL": text_encoder_2_path
})
TOKENIZER_PATH.update({
"llm": text_encoder_path,
"clipL": text_encoder_2_path
})
logger.info(f"Updated text encoder paths:")
logger.info(f"TEXT_ENCODER_PATH['llm']: {TEXT_ENCODER_PATH['llm']}")
logger.info(f"TEXT_ENCODER_PATH['clipL']: {TEXT_ENCODER_PATH['clipL']}")
logger.info(f"TOKENIZER_PATH['llm']: {TOKENIZER_PATH['llm']}")
logger.info(f"TOKENIZER_PATH['clipL']: {TOKENIZER_PATH['clipL']}")
self.args.dit_weight = str(dit_weight_path)
# Initialize model
models_root_path = Path(path)
if not models_root_path.exists():
raise ValueError(f"models_root_path does not exist: {models_root_path}")
try:
logger.info("Attempting to initialize HunyuanVideoSampler...")
self.model = HunyuanVideoSampler.from_pretrained(models_root_path, args=self.args)
logger.info("Successfully initialized HunyuanVideoSampler")
except Exception as e:
logger.error(f"Error initializing model: {str(e)}")
raise
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
"""Process a single request"""
# Log incoming request
logger.info(f"Processing request with data: {data}")
# Get inputs from request data
prompt = data.pop("inputs", None)
if prompt is None:
raise ValueError("No prompt provided in the 'inputs' field")
# Parse resolution
resolution = data.pop("resolution", "1280x720")
width, height = map(int, resolution.split("x"))
# Get other parameters with defaults
video_length = int(data.pop("video_length", 129))
seed = data.pop("seed", -1)
seed = None if seed == -1 else int(seed)
num_inference_steps = int(data.pop("num_inference_steps", 50))
guidance_scale = float(data.pop("guidance_scale", 1.0))
flow_shift = float(data.pop("flow_shift", 7.0))
embedded_guidance_scale = float(data.pop("embedded_guidance_scale", 6.0))
logger.info(f"Processing with parameters: width={width}, height={height}, "
f"video_length={video_length}, seed={seed}, "
f"num_inference_steps={num_inference_steps}")
try:
# Run inference
outputs = self.model.predict(
prompt=prompt,
height=height,
width=width,
video_length=video_length,
seed=seed,
negative_prompt="",
infer_steps=num_inference_steps,
guidance_scale=guidance_scale,
num_videos_per_prompt=1,
flow_shift=flow_shift,
batch_size=1,
embedded_guidance_scale=embedded_guidance_scale
)
# Get the video tensor
samples = outputs['samples']
sample = samples[0].unsqueeze(0)
# Save to temporary file
temp_path = "/tmp/temp_video.mp4"
save_videos_grid(sample, temp_path, fps=24)
# Read video file and convert to base64
with open(temp_path, "rb") as f:
video_bytes = f.read()
import base64
video_base64 = base64.b64encode(video_bytes).decode()
# Cleanup
os.remove(temp_path)
logger.info("Successfully generated and encoded video")
return {
"video_base64": video_base64,
"seed": outputs['seeds'][0],
"prompt": outputs['prompts'][0]
}
except Exception as e:
logger.error(f"Error during video generation: {str(e)}")
raise |