File size: 8,161 Bytes
2557c6e
 
 
 
 
afceeed
2557c6e
 
afceeed
 
 
 
 
 
829c2a5
afceeed
 
 
 
829c2a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a54c820
829c2a5
 
 
 
afceeed
 
829c2a5
 
 
afceeed
829c2a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
afceeed
 
 
 
2557c6e
 
 
afceeed
 
 
 
2557c6e
afceeed
2557c6e
 
 
 
 
 
 
afceeed
2557c6e
 
afceeed
 
 
 
 
 
 
 
 
2557c6e
 
afceeed
2557c6e
afceeed
2557c6e
 
 
afceeed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2557c6e
 
 
 
 
 
afceeed
2557c6e
 
 
 
 
 
 
afceeed
 
2557c6e
 
 
afceeed
 
 
 
2557c6e
afceeed
2557c6e
afceeed
2557c6e
afceeed
 
 
 
2557c6e
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
from typing import Dict, Any
import os
from pathlib import Path
import time
from datetime import datetime
import argparse
from hyvideo.utils.file_utils import save_videos_grid
from hyvideo.inference import HunyuanVideoSampler
from hyvideo.constants import NEGATIVE_PROMPT

def get_default_args():
    """Create default arguments instead of parsing from command line"""
    parser = argparse.ArgumentParser()
    
    # Model configuration
    parser.add_argument("--model", type=str, default="HYVideo-T/2")
    parser.add_argument("--model-resolution", type=str, default="720p", choices=["540p", "720p"])
    parser.add_argument("--latent-channels", type=int, default=4)
    parser.add_argument("--precision", type=str, default="bf16", choices=["bf16", "fp32", "fp16"])
    parser.add_argument("--rope-theta", type=float, default=10000)
    
    # VAE settings
    parser.add_argument("--vae", type=str, default="884-16c-hy")
    parser.add_argument("--vae-precision", type=str, default="bf16", choices=["bf16", "fp32", "fp16"])
    parser.add_argument("--vae-tiling", action="store_true")
    
    # Text encoder settings
    parser.add_argument("--text-encoder", type=str, default="clipL", choices=["clipL", "llm"])
    parser.add_argument("--text-encoder-precision", type=str, default="bf16", choices=["bf16", "fp32", "fp16"])
    parser.add_argument("--text-states-dim", type=int, default=1024)
    parser.add_argument("--text-len", type=int, default=77)
    parser.add_argument("--tokenizer", type=str, default="clipL", choices=["clipL", "llm"])
    
    # Prompt template settings
    parser.add_argument("--prompt-template", type=str, default="dit-llm-encode", 
                       choices=["dit-llm-encode", "dit-llm-encode-video"])
    parser.add_argument("--prompt-template-video", type=str, default="dit-llm-encode",
                       choices=["dit-llm-encode", "dit-llm-encode-video"])
    
    # Additional text encoder settings
    parser.add_argument("--hidden-state-skip-layer", type=int, default=0)
    parser.add_argument("--apply-final-norm", action="store_true")
    parser.add_argument("--text-encoder-2", type=str, default="clipL", choices=["clipL", "llm"])
    parser.add_argument("--text-encoder-precision-2", type=str, default="bf16", choices=["bf16", "fp32", "fp16"])
    parser.add_argument("--text-states-dim-2", type=int, default=1024)
    parser.add_argument("--tokenizer-2", type=str, default="clipL", choices=["clipL", "llm"])
    parser.add_argument("--text-len-2", type=int, default=77)
    
    # Inference settings
    parser.add_argument("--denoise-type", type=str, default="v-prediction")
    parser.add_argument("--flow-shift", type=float, default=7.0)
    parser.add_argument("--flow-reverse", action="store_true")
    parser.add_argument("--flow-solver", type=str, default="euler")
    parser.add_argument("--use-linear-quadratic-schedule", action="store_true")
    parser.add_argument("--linear-schedule-end", type=float, default=0.0)
    
    # Model paths and weights
    parser.add_argument("--model-base", type=str, default=None)
    parser.add_argument("--dit-weight", type=str, default=None)
    parser.add_argument("--load-key", type=str, default=None)
    
    # Hardware settings
    parser.add_argument("--use-cpu-offload", action="store_true")
    parser.add_argument("--batch-size", type=int, default=1)
    parser.add_argument("--infer-steps", type=int, default=50)
    parser.add_argument("--disable-autocast", action="store_true")
    
    # Output settings
    parser.add_argument("--save-path", type=str, default="outputs")
    parser.add_argument("--save-path-suffix", type=str, default="")
    parser.add_argument("--name-suffix", type=str, default="")
    
    # Generation settings
    parser.add_argument("--num-videos", type=int, default=1)
    parser.add_argument("--video-size", nargs="+", type=int, default=None)
    parser.add_argument("--video-length", type=int, default=129)
    parser.add_argument("--prompt", type=str, default=None)
    parser.add_argument("--seed-type", type=str, default="random", choices=["file", "random", "fixed", "auto"])
    parser.add_argument("--seed", type=int, default=-1)
    parser.add_argument("--neg-prompt", type=str, default="")
    parser.add_argument("--cfg-scale", type=float, default=1.0)
    parser.add_argument("--embedded-cfg-scale", type=float, default=6.0)
    parser.add_argument("--reproduce", action="store_true")
    
    # Additional degrees
    parser.add_argument("--ulysses-degree", type=float, default=1.0)
    parser.add_argument("--ring-degree", type=float, default=1.0)
    
    # Parse with empty args list to avoid reading sys.argv
    args = parser.parse_args([])
    return args

class EndpointHandler:
    def __init__(self, path: str = ""):
        """Initialize the handler with model path and default config."""
        # Use default args instead of parsing from command line
        self.args = get_default_args()
        self.args.model_base = path  # Use the provided model path
        
        # Initialize model
        models_root_path = Path(path)
        if not models_root_path.exists():
            raise ValueError(f"`models_root` not exists: {models_root_path}")
        
        self.model = HunyuanVideoSampler.from_pretrained(models_root_path, args=self.args)
        
    def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
        """Process a single request
        
        Args:
            data: Dictionary containing:
                - inputs (str): The prompt text
                - resolution (str, optional): Video resolution like "1280x720"
                - video_length (int, optional): Number of frames
                - num_inference_steps (int, optional): Number of inference steps
                - seed (int, optional): Random seed (-1 for random)
                - guidance_scale (float, optional): Guidance scale value
                - flow_shift (float, optional): Flow shift value  
                - embedded_guidance_scale (float, optional): Embedded guidance scale
        
        Returns:
            Dictionary containing the generated video as base64 string
        """
        # Get inputs from request data
        prompt = data.pop("inputs", None)
        if prompt is None:
            raise ValueError("No prompt provided in the 'inputs' field")
            
        # Parse resolution
        resolution = data.pop("resolution", "1280x720")
        width, height = map(int, resolution.split("x"))
        
        # Get other parameters with defaults
        video_length = int(data.pop("video_length", 129))
        seed = data.pop("seed", -1)
        seed = None if seed == -1 else int(seed)
        num_inference_steps = int(data.pop("num_inference_steps", 50))
        guidance_scale = float(data.pop("guidance_scale", 1.0))
        flow_shift = float(data.pop("flow_shift", 7.0))
        embedded_guidance_scale = float(data.pop("embedded_guidance_scale", 6.0))
        
        # Run inference
        outputs = self.model.predict(
            prompt=prompt,
            height=height,
            width=width,
            video_length=video_length,
            seed=seed,
            negative_prompt="",
            infer_steps=num_inference_steps,
            guidance_scale=guidance_scale,
            num_videos_per_prompt=1,
            flow_shift=flow_shift,
            batch_size=1,
            embedded_guidance_scale=embedded_guidance_scale
        )
        
        # Get the video tensor
        samples = outputs['samples']
        sample = samples[0].unsqueeze(0)
        
        # Save to temporary file
        temp_path = "/tmp/temp_video.mp4"
        save_videos_grid(sample, temp_path, fps=24)
        
        # Read video file and convert to base64
        with open(temp_path, "rb") as f:
            video_bytes = f.read()
        import base64
        video_base64 = base64.b64encode(video_bytes).decode()
        
        # Cleanup
        os.remove(temp_path)
        
        return {
            "video_base64": video_base64,
            "seed": outputs['seeds'][0],
            "prompt": outputs['prompts'][0]
        }