File size: 26,190 Bytes
f08eddf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
from typing import Any, List, Tuple, Optional, Union, Dict
from einops import rearrange

import torch
import torch.nn as nn
import torch.nn.functional as F

from diffusers.models import ModelMixin
from diffusers.configuration_utils import ConfigMixin, register_to_config

from .activation_layers import get_activation_layer
from .norm_layers import get_norm_layer
from .embed_layers import TimestepEmbedder, PatchEmbed, TextProjection
from .attenion import attention, parallel_attention, get_cu_seqlens
from .posemb_layers import apply_rotary_emb
from .mlp_layers import MLP, MLPEmbedder, FinalLayer
from .modulate_layers import ModulateDiT, modulate, apply_gate
from .token_refiner import SingleTokenRefiner


class MMDoubleStreamBlock(nn.Module):
    """
    A multimodal dit block with seperate modulation for
    text and image/video, see more details (SD3): https://arxiv.org/abs/2403.03206
                                     (Flux.1): https://github.com/black-forest-labs/flux
    """

    def __init__(
        self,
        hidden_size: int,
        heads_num: int,
        mlp_width_ratio: float,
        mlp_act_type: str = "gelu_tanh",
        qk_norm: bool = True,
        qk_norm_type: str = "rms",
        qkv_bias: bool = False,
        dtype: Optional[torch.dtype] = None,
        device: Optional[torch.device] = None,
    ):
        factory_kwargs = {"device": device, "dtype": dtype}
        super().__init__()

        self.deterministic = False
        self.heads_num = heads_num
        head_dim = hidden_size // heads_num
        mlp_hidden_dim = int(hidden_size * mlp_width_ratio)

        self.img_mod = ModulateDiT(
            hidden_size,
            factor=6,
            act_layer=get_activation_layer("silu"),
            **factory_kwargs,
        )
        self.img_norm1 = nn.LayerNorm(
            hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs
        )

        self.img_attn_qkv = nn.Linear(
            hidden_size, hidden_size * 3, bias=qkv_bias, **factory_kwargs
        )
        qk_norm_layer = get_norm_layer(qk_norm_type)
        self.img_attn_q_norm = (
            qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs)
            if qk_norm
            else nn.Identity()
        )
        self.img_attn_k_norm = (
            qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs)
            if qk_norm
            else nn.Identity()
        )
        self.img_attn_proj = nn.Linear(
            hidden_size, hidden_size, bias=qkv_bias, **factory_kwargs
        )

        self.img_norm2 = nn.LayerNorm(
            hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs
        )
        self.img_mlp = MLP(
            hidden_size,
            mlp_hidden_dim,
            act_layer=get_activation_layer(mlp_act_type),
            bias=True,
            **factory_kwargs,
        )

        self.txt_mod = ModulateDiT(
            hidden_size,
            factor=6,
            act_layer=get_activation_layer("silu"),
            **factory_kwargs,
        )
        self.txt_norm1 = nn.LayerNorm(
            hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs
        )

        self.txt_attn_qkv = nn.Linear(
            hidden_size, hidden_size * 3, bias=qkv_bias, **factory_kwargs
        )
        self.txt_attn_q_norm = (
            qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs)
            if qk_norm
            else nn.Identity()
        )
        self.txt_attn_k_norm = (
            qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs)
            if qk_norm
            else nn.Identity()
        )
        self.txt_attn_proj = nn.Linear(
            hidden_size, hidden_size, bias=qkv_bias, **factory_kwargs
        )

        self.txt_norm2 = nn.LayerNorm(
            hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs
        )
        self.txt_mlp = MLP(
            hidden_size,
            mlp_hidden_dim,
            act_layer=get_activation_layer(mlp_act_type),
            bias=True,
            **factory_kwargs,
        )
        self.hybrid_seq_parallel_attn = None

    def enable_deterministic(self):
        self.deterministic = True

    def disable_deterministic(self):
        self.deterministic = False

    def forward(
        self,
        img: torch.Tensor,
        txt: torch.Tensor,
        vec: torch.Tensor,
        cu_seqlens_q: Optional[torch.Tensor] = None,
        cu_seqlens_kv: Optional[torch.Tensor] = None,
        max_seqlen_q: Optional[int] = None,
        max_seqlen_kv: Optional[int] = None,
        freqs_cis: tuple = None,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        (
            img_mod1_shift,
            img_mod1_scale,
            img_mod1_gate,
            img_mod2_shift,
            img_mod2_scale,
            img_mod2_gate,
        ) = self.img_mod(vec).chunk(6, dim=-1)
        (
            txt_mod1_shift,
            txt_mod1_scale,
            txt_mod1_gate,
            txt_mod2_shift,
            txt_mod2_scale,
            txt_mod2_gate,
        ) = self.txt_mod(vec).chunk(6, dim=-1)

        # Prepare image for attention.
        img_modulated = self.img_norm1(img)
        img_modulated = modulate(
            img_modulated, shift=img_mod1_shift, scale=img_mod1_scale
        )
        img_qkv = self.img_attn_qkv(img_modulated)
        img_q, img_k, img_v = rearrange(
            img_qkv, "B L (K H D) -> K B L H D", K=3, H=self.heads_num
        )
        # Apply QK-Norm if needed
        img_q = self.img_attn_q_norm(img_q).to(img_v)
        img_k = self.img_attn_k_norm(img_k).to(img_v)

        # Apply RoPE if needed.
        if freqs_cis is not None:
            img_qq, img_kk = apply_rotary_emb(img_q, img_k, freqs_cis, head_first=False)
            assert (
                img_qq.shape == img_q.shape and img_kk.shape == img_k.shape
            ), f"img_kk: {img_qq.shape}, img_q: {img_q.shape}, img_kk: {img_kk.shape}, img_k: {img_k.shape}"
            img_q, img_k = img_qq, img_kk

        # Prepare txt for attention.
        txt_modulated = self.txt_norm1(txt)
        txt_modulated = modulate(
            txt_modulated, shift=txt_mod1_shift, scale=txt_mod1_scale
        )
        txt_qkv = self.txt_attn_qkv(txt_modulated)
        txt_q, txt_k, txt_v = rearrange(
            txt_qkv, "B L (K H D) -> K B L H D", K=3, H=self.heads_num
        )
        # Apply QK-Norm if needed.
        txt_q = self.txt_attn_q_norm(txt_q).to(txt_v)
        txt_k = self.txt_attn_k_norm(txt_k).to(txt_v)

        # Run actual attention.
        q = torch.cat((img_q, txt_q), dim=1)
        k = torch.cat((img_k, txt_k), dim=1)
        v = torch.cat((img_v, txt_v), dim=1)
        assert (
            cu_seqlens_q.shape[0] == 2 * img.shape[0] + 1
        ), f"cu_seqlens_q.shape:{cu_seqlens_q.shape}, img.shape[0]:{img.shape[0]}"
        
        # attention computation start
        if not self.hybrid_seq_parallel_attn:
            attn = attention(
                q,
                k,
                v,
                cu_seqlens_q=cu_seqlens_q,
                cu_seqlens_kv=cu_seqlens_kv,
                max_seqlen_q=max_seqlen_q,
                max_seqlen_kv=max_seqlen_kv,
                batch_size=img_k.shape[0],
            )
        else:
            attn = parallel_attention(
                self.hybrid_seq_parallel_attn,
                q,
                k,
                v,
                img_q_len=img_q.shape[1],
                img_kv_len=img_k.shape[1],
                cu_seqlens_q=cu_seqlens_q,
                cu_seqlens_kv=cu_seqlens_kv
            )
            
        # attention computation end

        img_attn, txt_attn = attn[:, : img.shape[1]], attn[:, img.shape[1] :]

        # Calculate the img bloks.
        img = img + apply_gate(self.img_attn_proj(img_attn), gate=img_mod1_gate)
        img = img + apply_gate(
            self.img_mlp(
                modulate(
                    self.img_norm2(img), shift=img_mod2_shift, scale=img_mod2_scale
                )
            ),
            gate=img_mod2_gate,
        )

        # Calculate the txt bloks.
        txt = txt + apply_gate(self.txt_attn_proj(txt_attn), gate=txt_mod1_gate)
        txt = txt + apply_gate(
            self.txt_mlp(
                modulate(
                    self.txt_norm2(txt), shift=txt_mod2_shift, scale=txt_mod2_scale
                )
            ),
            gate=txt_mod2_gate,
        )

        return img, txt


class MMSingleStreamBlock(nn.Module):
    """
    A DiT block with parallel linear layers as described in
    https://arxiv.org/abs/2302.05442 and adapted modulation interface.
    Also refer to (SD3): https://arxiv.org/abs/2403.03206
                  (Flux.1): https://github.com/black-forest-labs/flux
    """

    def __init__(
        self,
        hidden_size: int,
        heads_num: int,
        mlp_width_ratio: float = 4.0,
        mlp_act_type: str = "gelu_tanh",
        qk_norm: bool = True,
        qk_norm_type: str = "rms",
        qk_scale: float = None,
        dtype: Optional[torch.dtype] = None,
        device: Optional[torch.device] = None,
    ):
        factory_kwargs = {"device": device, "dtype": dtype}
        super().__init__()

        self.deterministic = False
        self.hidden_size = hidden_size
        self.heads_num = heads_num
        head_dim = hidden_size // heads_num
        mlp_hidden_dim = int(hidden_size * mlp_width_ratio)
        self.mlp_hidden_dim = mlp_hidden_dim
        self.scale = qk_scale or head_dim ** -0.5

        # qkv and mlp_in
        self.linear1 = nn.Linear(
            hidden_size, hidden_size * 3 + mlp_hidden_dim, **factory_kwargs
        )
        # proj and mlp_out
        self.linear2 = nn.Linear(
            hidden_size + mlp_hidden_dim, hidden_size, **factory_kwargs
        )

        qk_norm_layer = get_norm_layer(qk_norm_type)
        self.q_norm = (
            qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs)
            if qk_norm
            else nn.Identity()
        )
        self.k_norm = (
            qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs)
            if qk_norm
            else nn.Identity()
        )

        self.pre_norm = nn.LayerNorm(
            hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs
        )

        self.mlp_act = get_activation_layer(mlp_act_type)()
        self.modulation = ModulateDiT(
            hidden_size,
            factor=3,
            act_layer=get_activation_layer("silu"),
            **factory_kwargs,
        )
        self.hybrid_seq_parallel_attn = None

    def enable_deterministic(self):
        self.deterministic = True

    def disable_deterministic(self):
        self.deterministic = False

    def forward(
        self,
        x: torch.Tensor,
        vec: torch.Tensor,
        txt_len: int,
        cu_seqlens_q: Optional[torch.Tensor] = None,
        cu_seqlens_kv: Optional[torch.Tensor] = None,
        max_seqlen_q: Optional[int] = None,
        max_seqlen_kv: Optional[int] = None,
        freqs_cis: Tuple[torch.Tensor, torch.Tensor] = None,
    ) -> torch.Tensor:
        mod_shift, mod_scale, mod_gate = self.modulation(vec).chunk(3, dim=-1)
        x_mod = modulate(self.pre_norm(x), shift=mod_shift, scale=mod_scale)
        qkv, mlp = torch.split(
            self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1
        )

        q, k, v = rearrange(qkv, "B L (K H D) -> K B L H D", K=3, H=self.heads_num)

        # Apply QK-Norm if needed.
        q = self.q_norm(q).to(v)
        k = self.k_norm(k).to(v)

        # Apply RoPE if needed.
        if freqs_cis is not None:
            img_q, txt_q = q[:, :-txt_len, :, :], q[:, -txt_len:, :, :]
            img_k, txt_k = k[:, :-txt_len, :, :], k[:, -txt_len:, :, :]
            img_qq, img_kk = apply_rotary_emb(img_q, img_k, freqs_cis, head_first=False)
            assert (
                img_qq.shape == img_q.shape and img_kk.shape == img_k.shape
            ), f"img_kk: {img_qq.shape}, img_q: {img_q.shape}, img_kk: {img_kk.shape}, img_k: {img_k.shape}"
            img_q, img_k = img_qq, img_kk
            q = torch.cat((img_q, txt_q), dim=1)
            k = torch.cat((img_k, txt_k), dim=1)

        # Compute attention.
        assert (
            cu_seqlens_q.shape[0] == 2 * x.shape[0] + 1
        ), f"cu_seqlens_q.shape:{cu_seqlens_q.shape}, x.shape[0]:{x.shape[0]}"
        
        # attention computation start
        if not self.hybrid_seq_parallel_attn:
            attn = attention(
                q,
                k,
                v,
                cu_seqlens_q=cu_seqlens_q,
                cu_seqlens_kv=cu_seqlens_kv,
                max_seqlen_q=max_seqlen_q,
                max_seqlen_kv=max_seqlen_kv,
                batch_size=x.shape[0],
            )
        else:
            attn = parallel_attention(
                self.hybrid_seq_parallel_attn,
                q,
                k,
                v,
                img_q_len=img_q.shape[1],
                img_kv_len=img_k.shape[1],
                cu_seqlens_q=cu_seqlens_q,
                cu_seqlens_kv=cu_seqlens_kv
            )
        # attention computation end

        # Compute activation in mlp stream, cat again and run second linear layer.
        output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
        return x + apply_gate(output, gate=mod_gate)


class HYVideoDiffusionTransformer(ModelMixin, ConfigMixin):
    """
    HunyuanVideo Transformer backbone

    Inherited from ModelMixin and ConfigMixin for compatibility with diffusers' sampler StableDiffusionPipeline.

    Reference:
    [1] Flux.1: https://github.com/black-forest-labs/flux
    [2] MMDiT: http://arxiv.org/abs/2403.03206

    Parameters
    ----------
    args: argparse.Namespace
        The arguments parsed by argparse.
    patch_size: list
        The size of the patch.
    in_channels: int
        The number of input channels.
    out_channels: int
        The number of output channels.
    hidden_size: int
        The hidden size of the transformer backbone.
    heads_num: int
        The number of attention heads.
    mlp_width_ratio: float
        The ratio of the hidden size of the MLP in the transformer block.
    mlp_act_type: str
        The activation function of the MLP in the transformer block.
    depth_double_blocks: int
        The number of transformer blocks in the double blocks.
    depth_single_blocks: int
        The number of transformer blocks in the single blocks.
    rope_dim_list: list
        The dimension of the rotary embedding for t, h, w.
    qkv_bias: bool
        Whether to use bias in the qkv linear layer.
    qk_norm: bool
        Whether to use qk norm.
    qk_norm_type: str
        The type of qk norm.
    guidance_embed: bool
        Whether to use guidance embedding for distillation.
    text_projection: str
        The type of the text projection, default is single_refiner.
    use_attention_mask: bool
        Whether to use attention mask for text encoder.
    dtype: torch.dtype
        The dtype of the model.
    device: torch.device
        The device of the model.
    """

    @register_to_config
    def __init__(
        self,
        args: Any,
        patch_size: list = [1, 2, 2],
        in_channels: int = 4,  # Should be VAE.config.latent_channels.
        out_channels: int = None,
        hidden_size: int = 3072,
        heads_num: int = 24,
        mlp_width_ratio: float = 4.0,
        mlp_act_type: str = "gelu_tanh",
        mm_double_blocks_depth: int = 20,
        mm_single_blocks_depth: int = 40,
        rope_dim_list: List[int] = [16, 56, 56],
        qkv_bias: bool = True,
        qk_norm: bool = True,
        qk_norm_type: str = "rms",
        guidance_embed: bool = False,  # For modulation.
        text_projection: str = "single_refiner",
        use_attention_mask: bool = True,
        dtype: Optional[torch.dtype] = None,
        device: Optional[torch.device] = None,
    ):
        factory_kwargs = {"device": device, "dtype": dtype}
        super().__init__()

        self.patch_size = patch_size
        self.in_channels = in_channels
        self.out_channels = in_channels if out_channels is None else out_channels
        self.unpatchify_channels = self.out_channels
        self.guidance_embed = guidance_embed
        self.rope_dim_list = rope_dim_list

        # Text projection. Default to linear projection.
        # Alternative: TokenRefiner. See more details (LI-DiT): http://arxiv.org/abs/2406.11831
        self.use_attention_mask = use_attention_mask
        self.text_projection = text_projection

        self.text_states_dim = args.text_states_dim
        self.text_states_dim_2 = args.text_states_dim_2

        if hidden_size % heads_num != 0:
            raise ValueError(
                f"Hidden size {hidden_size} must be divisible by heads_num {heads_num}"
            )
        pe_dim = hidden_size // heads_num
        if sum(rope_dim_list) != pe_dim:
            raise ValueError(
                f"Got {rope_dim_list} but expected positional dim {pe_dim}"
            )
        self.hidden_size = hidden_size
        self.heads_num = heads_num

        # image projection
        self.img_in = PatchEmbed(
            self.patch_size, self.in_channels, self.hidden_size, **factory_kwargs
        )

        # text projection
        if self.text_projection == "linear":
            self.txt_in = TextProjection(
                self.text_states_dim,
                self.hidden_size,
                get_activation_layer("silu"),
                **factory_kwargs,
            )
        elif self.text_projection == "single_refiner":
            self.txt_in = SingleTokenRefiner(
                self.text_states_dim, hidden_size, heads_num, depth=2, **factory_kwargs
            )
        else:
            raise NotImplementedError(
                f"Unsupported text_projection: {self.text_projection}"
            )

        # time modulation
        self.time_in = TimestepEmbedder(
            self.hidden_size, get_activation_layer("silu"), **factory_kwargs
        )

        # text modulation
        self.vector_in = MLPEmbedder(
            self.text_states_dim_2, self.hidden_size, **factory_kwargs
        )

        # guidance modulation
        self.guidance_in = (
            TimestepEmbedder(
                self.hidden_size, get_activation_layer("silu"), **factory_kwargs
            )
            if guidance_embed
            else None
        )

        # double blocks
        self.double_blocks = nn.ModuleList(
            [
                MMDoubleStreamBlock(
                    self.hidden_size,
                    self.heads_num,
                    mlp_width_ratio=mlp_width_ratio,
                    mlp_act_type=mlp_act_type,
                    qk_norm=qk_norm,
                    qk_norm_type=qk_norm_type,
                    qkv_bias=qkv_bias,
                    **factory_kwargs,
                )
                for _ in range(mm_double_blocks_depth)
            ]
        )

        # single blocks
        self.single_blocks = nn.ModuleList(
            [
                MMSingleStreamBlock(
                    self.hidden_size,
                    self.heads_num,
                    mlp_width_ratio=mlp_width_ratio,
                    mlp_act_type=mlp_act_type,
                    qk_norm=qk_norm,
                    qk_norm_type=qk_norm_type,
                    **factory_kwargs,
                )
                for _ in range(mm_single_blocks_depth)
            ]
        )

        self.final_layer = FinalLayer(
            self.hidden_size,
            self.patch_size,
            self.out_channels,
            get_activation_layer("silu"),
            **factory_kwargs,
        )

    def enable_deterministic(self):
        for block in self.double_blocks:
            block.enable_deterministic()
        for block in self.single_blocks:
            block.enable_deterministic()

    def disable_deterministic(self):
        for block in self.double_blocks:
            block.disable_deterministic()
        for block in self.single_blocks:
            block.disable_deterministic()

    def forward(
        self,
        x: torch.Tensor,
        t: torch.Tensor,  # Should be in range(0, 1000).
        text_states: torch.Tensor = None,
        text_mask: torch.Tensor = None,  # Now we don't use it.
        text_states_2: Optional[torch.Tensor] = None,  # Text embedding for modulation.
        freqs_cos: Optional[torch.Tensor] = None,
        freqs_sin: Optional[torch.Tensor] = None,
        guidance: torch.Tensor = None,  # Guidance for modulation, should be cfg_scale x 1000.
        return_dict: bool = True,
    ) -> Union[torch.Tensor, Dict[str, torch.Tensor]]:
        out = {}
        img = x
        txt = text_states
        _, _, ot, oh, ow = x.shape
        tt, th, tw = (
            ot // self.patch_size[0],
            oh // self.patch_size[1],
            ow // self.patch_size[2],
        )

        # Prepare modulation vectors.
        vec = self.time_in(t)

        # text modulation
        vec = vec + self.vector_in(text_states_2)

        # guidance modulation
        if self.guidance_embed:
            if guidance is None:
                raise ValueError(
                    "Didn't get guidance strength for guidance distilled model."
                )

            # our timestep_embedding is merged into guidance_in(TimestepEmbedder)
            vec = vec + self.guidance_in(guidance)

        # Embed image and text.
        img = self.img_in(img)
        if self.text_projection == "linear":
            txt = self.txt_in(txt)
        elif self.text_projection == "single_refiner":
            txt = self.txt_in(txt, t, text_mask if self.use_attention_mask else None)
        else:
            raise NotImplementedError(
                f"Unsupported text_projection: {self.text_projection}"
            )

        txt_seq_len = txt.shape[1]
        img_seq_len = img.shape[1]

        # Compute cu_squlens and max_seqlen for flash attention
        cu_seqlens_q = get_cu_seqlens(text_mask, img_seq_len)
        cu_seqlens_kv = cu_seqlens_q
        max_seqlen_q = img_seq_len + txt_seq_len
        max_seqlen_kv = max_seqlen_q

        freqs_cis = (freqs_cos, freqs_sin) if freqs_cos is not None else None
        # --------------------- Pass through DiT blocks ------------------------
        for _, block in enumerate(self.double_blocks):
            double_block_args = [
                img,
                txt,
                vec,
                cu_seqlens_q,
                cu_seqlens_kv,
                max_seqlen_q,
                max_seqlen_kv,
                freqs_cis,
            ]

            img, txt = block(*double_block_args)

        # Merge txt and img to pass through single stream blocks.
        x = torch.cat((img, txt), 1)
        if len(self.single_blocks) > 0:
            for _, block in enumerate(self.single_blocks):
                single_block_args = [
                    x,
                    vec,
                    txt_seq_len,
                    cu_seqlens_q,
                    cu_seqlens_kv,
                    max_seqlen_q,
                    max_seqlen_kv,
                    (freqs_cos, freqs_sin),
                ]

                x = block(*single_block_args)

        img = x[:, :img_seq_len, ...]

        # ---------------------------- Final layer ------------------------------
        img = self.final_layer(img, vec)  # (N, T, patch_size ** 2 * out_channels)

        img = self.unpatchify(img, tt, th, tw)
        if return_dict:
            out["x"] = img
            return out
        return img

    def unpatchify(self, x, t, h, w):
        """
        x: (N, T, patch_size**2 * C)
        imgs: (N, H, W, C)
        """
        c = self.unpatchify_channels
        pt, ph, pw = self.patch_size
        assert t * h * w == x.shape[1]

        x = x.reshape(shape=(x.shape[0], t, h, w, c, pt, ph, pw))
        x = torch.einsum("nthwcopq->nctohpwq", x)
        imgs = x.reshape(shape=(x.shape[0], c, t * pt, h * ph, w * pw))

        return imgs

    def params_count(self):
        counts = {
            "double": sum(
                [
                    sum(p.numel() for p in block.img_attn_qkv.parameters())
                    + sum(p.numel() for p in block.img_attn_proj.parameters())
                    + sum(p.numel() for p in block.img_mlp.parameters())
                    + sum(p.numel() for p in block.txt_attn_qkv.parameters())
                    + sum(p.numel() for p in block.txt_attn_proj.parameters())
                    + sum(p.numel() for p in block.txt_mlp.parameters())
                    for block in self.double_blocks
                ]
            ),
            "single": sum(
                [
                    sum(p.numel() for p in block.linear1.parameters())
                    + sum(p.numel() for p in block.linear2.parameters())
                    for block in self.single_blocks
                ]
            ),
            "total": sum(p.numel() for p in self.parameters()),
        }
        counts["attn+mlp"] = counts["double"] + counts["single"]
        return counts


#################################################################################
#                             HunyuanVideo Configs                              #
#################################################################################

HUNYUAN_VIDEO_CONFIG = {
    "HYVideo-T/2": {
        "mm_double_blocks_depth": 20,
        "mm_single_blocks_depth": 40,
        "rope_dim_list": [16, 56, 56],
        "hidden_size": 3072,
        "heads_num": 24,
        "mlp_width_ratio": 4,
    },
    "HYVideo-T/2-cfgdistill": {
        "mm_double_blocks_depth": 20,
        "mm_single_blocks_depth": 40,
        "rope_dim_list": [16, 56, 56],
        "hidden_size": 3072,
        "heads_num": 24,
        "mlp_width_ratio": 4,
        "guidance_embed": True,
    },
}