File size: 11,524 Bytes
f08eddf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 |
import argparse
from .constants import *
import re
from .modules.models import HUNYUAN_VIDEO_CONFIG
def parse_args(namespace=None):
parser = argparse.ArgumentParser(description="HunyuanVideo inference script")
parser = add_network_args(parser)
parser = add_extra_models_args(parser)
parser = add_denoise_schedule_args(parser)
parser = add_inference_args(parser)
parser = add_parallel_args(parser)
args = parser.parse_args(namespace=namespace)
args = sanity_check_args(args)
return args
def add_network_args(parser: argparse.ArgumentParser):
group = parser.add_argument_group(title="HunyuanVideo network args")
# Main model
group.add_argument(
"--model",
type=str,
choices=list(HUNYUAN_VIDEO_CONFIG.keys()),
default="HYVideo-T/2-cfgdistill",
)
group.add_argument(
"--latent-channels",
type=str,
default=16,
help="Number of latent channels of DiT. If None, it will be determined by `vae`. If provided, "
"it still needs to match the latent channels of the VAE model.",
)
group.add_argument(
"--precision",
type=str,
default="bf16",
choices=PRECISIONS,
help="Precision mode. Options: fp32, fp16, bf16. Applied to the backbone model and optimizer.",
)
# RoPE
group.add_argument(
"--rope-theta", type=int, default=256, help="Theta used in RoPE."
)
return parser
def add_extra_models_args(parser: argparse.ArgumentParser):
group = parser.add_argument_group(
title="Extra models args, including vae, text encoders and tokenizers)"
)
# - VAE
group.add_argument(
"--vae",
type=str,
default="884-16c-hy",
choices=list(VAE_PATH),
help="Name of the VAE model.",
)
group.add_argument(
"--vae-precision",
type=str,
default="fp16",
choices=PRECISIONS,
help="Precision mode for the VAE model.",
)
group.add_argument(
"--vae-tiling",
action="store_true",
help="Enable tiling for the VAE model to save GPU memory.",
)
group.set_defaults(vae_tiling=True)
group.add_argument(
"--text-encoder",
type=str,
default="llm",
choices=list(TEXT_ENCODER_PATH),
help="Name of the text encoder model.",
)
group.add_argument(
"--text-encoder-precision",
type=str,
default="fp16",
choices=PRECISIONS,
help="Precision mode for the text encoder model.",
)
group.add_argument(
"--text-states-dim",
type=int,
default=4096,
help="Dimension of the text encoder hidden states.",
)
group.add_argument(
"--text-len", type=int, default=256, help="Maximum length of the text input."
)
group.add_argument(
"--tokenizer",
type=str,
default="llm",
choices=list(TOKENIZER_PATH),
help="Name of the tokenizer model.",
)
group.add_argument(
"--prompt-template",
type=str,
default="dit-llm-encode",
choices=PROMPT_TEMPLATE,
help="Image prompt template for the decoder-only text encoder model.",
)
group.add_argument(
"--prompt-template-video",
type=str,
default="dit-llm-encode-video",
choices=PROMPT_TEMPLATE,
help="Video prompt template for the decoder-only text encoder model.",
)
group.add_argument(
"--hidden-state-skip-layer",
type=int,
default=2,
help="Skip layer for hidden states.",
)
group.add_argument(
"--apply-final-norm",
action="store_true",
help="Apply final normalization to the used text encoder hidden states.",
)
# - CLIP
group.add_argument(
"--text-encoder-2",
type=str,
default="clipL",
choices=list(TEXT_ENCODER_PATH),
help="Name of the second text encoder model.",
)
group.add_argument(
"--text-encoder-precision-2",
type=str,
default="fp16",
choices=PRECISIONS,
help="Precision mode for the second text encoder model.",
)
group.add_argument(
"--text-states-dim-2",
type=int,
default=768,
help="Dimension of the second text encoder hidden states.",
)
group.add_argument(
"--tokenizer-2",
type=str,
default="clipL",
choices=list(TOKENIZER_PATH),
help="Name of the second tokenizer model.",
)
group.add_argument(
"--text-len-2",
type=int,
default=77,
help="Maximum length of the second text input.",
)
return parser
def add_denoise_schedule_args(parser: argparse.ArgumentParser):
group = parser.add_argument_group(title="Denoise schedule args")
group.add_argument(
"--denoise-type",
type=str,
default="flow",
help="Denoise type for noised inputs.",
)
# Flow Matching
group.add_argument(
"--flow-shift",
type=float,
default=7.0,
help="Shift factor for flow matching schedulers.",
)
group.add_argument(
"--flow-reverse",
action="store_true",
help="If reverse, learning/sampling from t=1 -> t=0.",
)
group.add_argument(
"--flow-solver",
type=str,
default="euler",
help="Solver for flow matching.",
)
group.add_argument(
"--use-linear-quadratic-schedule",
action="store_true",
help="Use linear quadratic schedule for flow matching."
"Following MovieGen (https://ai.meta.com/static-resource/movie-gen-research-paper)",
)
group.add_argument(
"--linear-schedule-end",
type=int,
default=25,
help="End step for linear quadratic schedule for flow matching.",
)
return parser
def add_inference_args(parser: argparse.ArgumentParser):
group = parser.add_argument_group(title="Inference args")
# ======================== Model loads ========================
group.add_argument(
"--model-base",
type=str,
default=".",
help="Root path of all the models, including t2v models and extra models.",
)
group.add_argument(
"--dit-weight",
type=str,
default="./hunyuan-video-t2v-720p/transformers/mp_rank_00_model_states.pt",
help="Path to the HunyuanVideo model. If None, search the model in the args.model_root."
"1. If it is a file, load the model directly."
"2. If it is a directory, search the model in the directory. Support two types of models: "
"1) named `pytorch_model_*.pt`"
"2) named `*_model_states.pt`, where * can be `mp_rank_00`.",
)
group.add_argument(
"--model-resolution",
type=str,
default="540p",
choices=["540p", "720p"],
help="Root path of all the models, including t2v models and extra models.",
)
group.add_argument(
"--load-key",
type=str,
default="module",
help="Key to load the model states. 'module' for the main model, 'ema' for the EMA model.",
)
group.add_argument(
"--use-cpu-offload",
action="store_true",
help="Use CPU offload for the model load.",
)
# ======================== Inference general setting ========================
group.add_argument(
"--batch-size",
type=int,
default=1,
help="Batch size for inference and evaluation.",
)
group.add_argument(
"--infer-steps",
type=int,
default=50,
help="Number of denoising steps for inference.",
)
group.add_argument(
"--disable-autocast",
action="store_true",
help="Disable autocast for denoising loop and vae decoding in pipeline sampling.",
)
group.add_argument(
"--save-path",
type=str,
default="./results",
help="Path to save the generated samples.",
)
group.add_argument(
"--save-path-suffix",
type=str,
default="",
help="Suffix for the directory of saved samples.",
)
group.add_argument(
"--name-suffix",
type=str,
default="",
help="Suffix for the names of saved samples.",
)
group.add_argument(
"--num-videos",
type=int,
default=1,
help="Number of videos to generate for each prompt.",
)
# ---sample size---
group.add_argument(
"--video-size",
type=int,
nargs="+",
default=(720, 1280),
help="Video size for training. If a single value is provided, it will be used for both height "
"and width. If two values are provided, they will be used for height and width "
"respectively.",
)
group.add_argument(
"--video-length",
type=int,
default=129,
help="How many frames to sample from a video. if using 3d vae, the number should be 4n+1",
)
# --- prompt ---
group.add_argument(
"--prompt",
type=str,
default=None,
help="Prompt for sampling during evaluation.",
)
group.add_argument(
"--seed-type",
type=str,
default="auto",
choices=["file", "random", "fixed", "auto"],
help="Seed type for evaluation. If file, use the seed from the CSV file. If random, generate a "
"random seed. If fixed, use the fixed seed given by `--seed`. If auto, `csv` will use the "
"seed column if available, otherwise use the fixed `seed` value. `prompt` will use the "
"fixed `seed` value.",
)
group.add_argument("--seed", type=int, default=None, help="Seed for evaluation.")
# Classifier-Free Guidance
group.add_argument(
"--neg-prompt", type=str, default=None, help="Negative prompt for sampling."
)
group.add_argument(
"--cfg-scale", type=float, default=1.0, help="Classifier free guidance scale."
)
group.add_argument(
"--embedded-cfg-scale",
type=float,
default=6.0,
help="Embeded classifier free guidance scale.",
)
group.add_argument(
"--reproduce",
action="store_true",
help="Enable reproducibility by setting random seeds and deterministic algorithms.",
)
return parser
def add_parallel_args(parser: argparse.ArgumentParser):
group = parser.add_argument_group(title="Parallel args")
# ======================== Model loads ========================
group.add_argument(
"--ulysses-degree",
type=int,
default=1,
help="Ulysses degree.",
)
group.add_argument(
"--ring-degree",
type=int,
default=1,
help="Ulysses degree.",
)
return parser
def sanity_check_args(args):
# VAE channels
vae_pattern = r"\d{2,3}-\d{1,2}c-\w+"
if not re.match(vae_pattern, args.vae):
raise ValueError(
f"Invalid VAE model: {args.vae}. Must be in the format of '{vae_pattern}'."
)
vae_channels = int(args.vae.split("-")[1][:-1])
if args.latent_channels is None:
args.latent_channels = vae_channels
if vae_channels != args.latent_channels:
raise ValueError(
f"Latent channels ({args.latent_channels}) must match the VAE channels ({vae_channels})."
)
return args
|