jbilcke-hf's picture
jbilcke-hf HF staff
Upload 30 files
f08eddf verified
raw
history blame
49.5 kB
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
#
# Modified from diffusers==0.29.2
#
# ==============================================================================
import inspect
from typing import Any, Callable, Dict, List, Optional, Union, Tuple
import torch
import torch.distributed as dist
import numpy as np
from dataclasses import dataclass
from packaging import version
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
from diffusers.configuration_utils import FrozenDict
from diffusers.image_processor import VaeImageProcessor
from diffusers.loaders import LoraLoaderMixin, TextualInversionLoaderMixin
from diffusers.models import AutoencoderKL
from diffusers.models.lora import adjust_lora_scale_text_encoder
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import (
USE_PEFT_BACKEND,
deprecate,
logging,
replace_example_docstring,
scale_lora_layers,
unscale_lora_layers,
)
from diffusers.utils.torch_utils import randn_tensor
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.utils import BaseOutput
from ...constants import PRECISION_TO_TYPE
from ...vae.autoencoder_kl_causal_3d import AutoencoderKLCausal3D
from ...text_encoder import TextEncoder
from ...modules import HYVideoDiffusionTransformer
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
EXAMPLE_DOC_STRING = """"""
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
"""
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
"""
std_text = noise_pred_text.std(
dim=list(range(1, noise_pred_text.ndim)), keepdim=True
)
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
# rescale the results from guidance (fixes overexposure)
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
noise_cfg = (
guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
)
return noise_cfg
def retrieve_timesteps(
scheduler,
num_inference_steps: Optional[int] = None,
device: Optional[Union[str, torch.device]] = None,
timesteps: Optional[List[int]] = None,
sigmas: Optional[List[float]] = None,
**kwargs,
):
"""
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
Args:
scheduler (`SchedulerMixin`):
The scheduler to get timesteps from.
num_inference_steps (`int`):
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
must be `None`.
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
timesteps (`List[int]`, *optional*):
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
`num_inference_steps` and `sigmas` must be `None`.
sigmas (`List[float]`, *optional*):
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
`num_inference_steps` and `timesteps` must be `None`.
Returns:
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
second element is the number of inference steps.
"""
if timesteps is not None and sigmas is not None:
raise ValueError(
"Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values"
)
if timesteps is not None:
accepts_timesteps = "timesteps" in set(
inspect.signature(scheduler.set_timesteps).parameters.keys()
)
if not accepts_timesteps:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
f" timestep schedules. Please check whether you are using the correct scheduler."
)
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
elif sigmas is not None:
accept_sigmas = "sigmas" in set(
inspect.signature(scheduler.set_timesteps).parameters.keys()
)
if not accept_sigmas:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
f" sigmas schedules. Please check whether you are using the correct scheduler."
)
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
else:
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
timesteps = scheduler.timesteps
return timesteps, num_inference_steps
@dataclass
class HunyuanVideoPipelineOutput(BaseOutput):
videos: Union[torch.Tensor, np.ndarray]
class HunyuanVideoPipeline(DiffusionPipeline):
r"""
Pipeline for text-to-video generation using HunyuanVideo.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
Args:
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
text_encoder ([`TextEncoder`]):
Frozen text-encoder.
text_encoder_2 ([`TextEncoder`]):
Frozen text-encoder_2.
transformer ([`HYVideoDiffusionTransformer`]):
A `HYVideoDiffusionTransformer` to denoise the encoded video latents.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latents.
"""
model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae"
_optional_components = ["text_encoder_2"]
_exclude_from_cpu_offload = ["transformer"]
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
def __init__(
self,
vae: AutoencoderKL,
text_encoder: TextEncoder,
transformer: HYVideoDiffusionTransformer,
scheduler: KarrasDiffusionSchedulers,
text_encoder_2: Optional[TextEncoder] = None,
progress_bar_config: Dict[str, Any] = None,
args=None,
):
super().__init__()
# ==========================================================================================
if progress_bar_config is None:
progress_bar_config = {}
if not hasattr(self, "_progress_bar_config"):
self._progress_bar_config = {}
self._progress_bar_config.update(progress_bar_config)
self.args = args
# ==========================================================================================
if (
hasattr(scheduler.config, "steps_offset")
and scheduler.config.steps_offset != 1
):
deprecation_message = (
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
" file"
)
deprecate(
"steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False
)
new_config = dict(scheduler.config)
new_config["steps_offset"] = 1
scheduler._internal_dict = FrozenDict(new_config)
if (
hasattr(scheduler.config, "clip_sample")
and scheduler.config.clip_sample is True
):
deprecation_message = (
f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
" `clip_sample` should be set to False in the configuration file. Please make sure to update the"
" config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
" future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
" nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
)
deprecate(
"clip_sample not set", "1.0.0", deprecation_message, standard_warn=False
)
new_config = dict(scheduler.config)
new_config["clip_sample"] = False
scheduler._internal_dict = FrozenDict(new_config)
self.register_modules(
vae=vae,
text_encoder=text_encoder,
transformer=transformer,
scheduler=scheduler,
text_encoder_2=text_encoder_2,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
def encode_prompt(
self,
prompt,
device,
num_videos_per_prompt,
do_classifier_free_guidance,
negative_prompt=None,
prompt_embeds: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
negative_attention_mask: Optional[torch.Tensor] = None,
lora_scale: Optional[float] = None,
clip_skip: Optional[int] = None,
text_encoder: Optional[TextEncoder] = None,
data_type: Optional[str] = "image",
):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `List[str]`, *optional*):
prompt to be encoded
device: (`torch.device`):
torch device
num_videos_per_prompt (`int`):
number of videos that should be generated per prompt
do_classifier_free_guidance (`bool`):
whether to use classifier free guidance or not
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the video generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
attention_mask (`torch.Tensor`, *optional*):
negative_prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
negative_attention_mask (`torch.Tensor`, *optional*):
lora_scale (`float`, *optional*):
A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
clip_skip (`int`, *optional*):
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
the output of the pre-final layer will be used for computing the prompt embeddings.
text_encoder (TextEncoder, *optional*):
data_type (`str`, *optional*):
"""
if text_encoder is None:
text_encoder = self.text_encoder
# set lora scale so that monkey patched LoRA
# function of text encoder can correctly access it
if lora_scale is not None and isinstance(self, LoraLoaderMixin):
self._lora_scale = lora_scale
# dynamically adjust the LoRA scale
if not USE_PEFT_BACKEND:
adjust_lora_scale_text_encoder(text_encoder.model, lora_scale)
else:
scale_lora_layers(text_encoder.model, lora_scale)
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
if prompt_embeds is None:
# textual inversion: process multi-vector tokens if necessary
if isinstance(self, TextualInversionLoaderMixin):
prompt = self.maybe_convert_prompt(prompt, text_encoder.tokenizer)
text_inputs = text_encoder.text2tokens(prompt, data_type=data_type)
if clip_skip is None:
prompt_outputs = text_encoder.encode(
text_inputs, data_type=data_type, device=device
)
prompt_embeds = prompt_outputs.hidden_state
else:
prompt_outputs = text_encoder.encode(
text_inputs,
output_hidden_states=True,
data_type=data_type,
device=device,
)
# Access the `hidden_states` first, that contains a tuple of
# all the hidden states from the encoder layers. Then index into
# the tuple to access the hidden states from the desired layer.
prompt_embeds = prompt_outputs.hidden_states_list[-(clip_skip + 1)]
# We also need to apply the final LayerNorm here to not mess with the
# representations. The `last_hidden_states` that we typically use for
# obtaining the final prompt representations passes through the LayerNorm
# layer.
prompt_embeds = text_encoder.model.text_model.final_layer_norm(
prompt_embeds
)
attention_mask = prompt_outputs.attention_mask
if attention_mask is not None:
attention_mask = attention_mask.to(device)
bs_embed, seq_len = attention_mask.shape
attention_mask = attention_mask.repeat(1, num_videos_per_prompt)
attention_mask = attention_mask.view(
bs_embed * num_videos_per_prompt, seq_len
)
if text_encoder is not None:
prompt_embeds_dtype = text_encoder.dtype
elif self.transformer is not None:
prompt_embeds_dtype = self.transformer.dtype
else:
prompt_embeds_dtype = prompt_embeds.dtype
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
if prompt_embeds.ndim == 2:
bs_embed, _ = prompt_embeds.shape
# duplicate text embeddings for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt)
prompt_embeds = prompt_embeds.view(bs_embed * num_videos_per_prompt, -1)
else:
bs_embed, seq_len, _ = prompt_embeds.shape
# duplicate text embeddings for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1)
prompt_embeds = prompt_embeds.view(
bs_embed * num_videos_per_prompt, seq_len, -1
)
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance and negative_prompt_embeds is None:
uncond_tokens: List[str]
if negative_prompt is None:
uncond_tokens = [""] * batch_size
elif prompt is not None and type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt]
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
else:
uncond_tokens = negative_prompt
# textual inversion: process multi-vector tokens if necessary
if isinstance(self, TextualInversionLoaderMixin):
uncond_tokens = self.maybe_convert_prompt(
uncond_tokens, text_encoder.tokenizer
)
# max_length = prompt_embeds.shape[1]
uncond_input = text_encoder.text2tokens(uncond_tokens, data_type=data_type)
negative_prompt_outputs = text_encoder.encode(
uncond_input, data_type=data_type, device=device
)
negative_prompt_embeds = negative_prompt_outputs.hidden_state
negative_attention_mask = negative_prompt_outputs.attention_mask
if negative_attention_mask is not None:
negative_attention_mask = negative_attention_mask.to(device)
_, seq_len = negative_attention_mask.shape
negative_attention_mask = negative_attention_mask.repeat(
1, num_videos_per_prompt
)
negative_attention_mask = negative_attention_mask.view(
batch_size * num_videos_per_prompt, seq_len
)
if do_classifier_free_guidance:
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = negative_prompt_embeds.shape[1]
negative_prompt_embeds = negative_prompt_embeds.to(
dtype=prompt_embeds_dtype, device=device
)
if negative_prompt_embeds.ndim == 2:
negative_prompt_embeds = negative_prompt_embeds.repeat(
1, num_videos_per_prompt
)
negative_prompt_embeds = negative_prompt_embeds.view(
batch_size * num_videos_per_prompt, -1
)
else:
negative_prompt_embeds = negative_prompt_embeds.repeat(
1, num_videos_per_prompt, 1
)
negative_prompt_embeds = negative_prompt_embeds.view(
batch_size * num_videos_per_prompt, seq_len, -1
)
if text_encoder is not None:
if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND:
# Retrieve the original scale by scaling back the LoRA layers
unscale_lora_layers(text_encoder.model, lora_scale)
return (
prompt_embeds,
negative_prompt_embeds,
attention_mask,
negative_attention_mask,
)
def decode_latents(self, latents, enable_tiling=True):
deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead"
deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False)
latents = 1 / self.vae.config.scaling_factor * latents
if enable_tiling:
self.vae.enable_tiling()
image = self.vae.decode(latents, return_dict=False)[0]
else:
image = self.vae.decode(latents, return_dict=False)[0]
image = (image / 2 + 0.5).clamp(0, 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
if image.ndim == 4:
image = image.cpu().permute(0, 2, 3, 1).float()
else:
image = image.cpu().float()
return image
def prepare_extra_func_kwargs(self, func, kwargs):
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
extra_step_kwargs = {}
for k, v in kwargs.items():
accepts = k in set(inspect.signature(func).parameters.keys())
if accepts:
extra_step_kwargs[k] = v
return extra_step_kwargs
def check_inputs(
self,
prompt,
height,
width,
video_length,
callback_steps,
negative_prompt=None,
prompt_embeds=None,
negative_prompt_embeds=None,
callback_on_step_end_tensor_inputs=None,
vae_ver="88-4c-sd",
):
if height % 8 != 0 or width % 8 != 0:
raise ValueError(
f"`height` and `width` have to be divisible by 8 but are {height} and {width}."
)
if video_length is not None:
if "884" in vae_ver:
if video_length != 1 and (video_length - 1) % 4 != 0:
raise ValueError(
f"`video_length` has to be 1 or a multiple of 4 but is {video_length}."
)
elif "888" in vae_ver:
if video_length != 1 and (video_length - 1) % 8 != 0:
raise ValueError(
f"`video_length` has to be 1 or a multiple of 8 but is {video_length}."
)
if callback_steps is not None and (
not isinstance(callback_steps, int) or callback_steps <= 0
):
raise ValueError(
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
f" {type(callback_steps)}."
)
if callback_on_step_end_tensor_inputs is not None and not all(
k in self._callback_tensor_inputs
for k in callback_on_step_end_tensor_inputs
):
raise ValueError(
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
)
if prompt is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt is None and prompt_embeds is None:
raise ValueError(
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
)
elif prompt is not None and (
not isinstance(prompt, str) and not isinstance(prompt, list)
):
raise ValueError(
f"`prompt` has to be of type `str` or `list` but is {type(prompt)}"
)
if negative_prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
if prompt_embeds is not None and negative_prompt_embeds is not None:
if prompt_embeds.shape != negative_prompt_embeds.shape:
raise ValueError(
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
f" {negative_prompt_embeds.shape}."
)
def prepare_latents(
self,
batch_size,
num_channels_latents,
height,
width,
video_length,
dtype,
device,
generator,
latents=None,
):
shape = (
batch_size,
num_channels_latents,
video_length,
int(height) // self.vae_scale_factor,
int(width) // self.vae_scale_factor,
)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
if latents is None:
latents = randn_tensor(
shape, generator=generator, device=device, dtype=dtype
)
else:
latents = latents.to(device)
# Check existence to make it compatible with FlowMatchEulerDiscreteScheduler
if hasattr(self.scheduler, "init_noise_sigma"):
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
return latents
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
def get_guidance_scale_embedding(
self,
w: torch.Tensor,
embedding_dim: int = 512,
dtype: torch.dtype = torch.float32,
) -> torch.Tensor:
"""
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
Args:
w (`torch.Tensor`):
Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings.
embedding_dim (`int`, *optional*, defaults to 512):
Dimension of the embeddings to generate.
dtype (`torch.dtype`, *optional*, defaults to `torch.float32`):
Data type of the generated embeddings.
Returns:
`torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`.
"""
assert len(w.shape) == 1
w = w * 1000.0
half_dim = embedding_dim // 2
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
emb = w.to(dtype)[:, None] * emb[None, :]
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
if embedding_dim % 2 == 1: # zero pad
emb = torch.nn.functional.pad(emb, (0, 1))
assert emb.shape == (w.shape[0], embedding_dim)
return emb
@property
def guidance_scale(self):
return self._guidance_scale
@property
def guidance_rescale(self):
return self._guidance_rescale
@property
def clip_skip(self):
return self._clip_skip
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
@property
def do_classifier_free_guidance(self):
# return self._guidance_scale > 1 and self.transformer.config.time_cond_proj_dim is None
return self._guidance_scale > 1
@property
def cross_attention_kwargs(self):
return self._cross_attention_kwargs
@property
def num_timesteps(self):
return self._num_timesteps
@property
def interrupt(self):
return self._interrupt
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: Union[str, List[str]],
height: int,
width: int,
video_length: int,
data_type: str = "video",
num_inference_steps: int = 50,
timesteps: List[int] = None,
sigmas: List[float] = None,
guidance_scale: float = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_videos_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.Tensor] = None,
prompt_embeds: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
negative_attention_mask: Optional[torch.Tensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
guidance_rescale: float = 0.0,
clip_skip: Optional[int] = None,
callback_on_step_end: Optional[
Union[
Callable[[int, int, Dict], None],
PipelineCallback,
MultiPipelineCallbacks,
]
] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
freqs_cis: Tuple[torch.Tensor, torch.Tensor] = None,
vae_ver: str = "88-4c-sd",
enable_tiling: bool = False,
n_tokens: Optional[int] = None,
embedded_guidance_scale: Optional[float] = None,
**kwargs,
):
r"""
The call function to the pipeline for generation.
Args:
prompt (`str` or `List[str]`):
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
height (`int`):
The height in pixels of the generated image.
width (`int`):
The width in pixels of the generated image.
video_length (`int`):
The number of frames in the generated video.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
timesteps (`List[int]`, *optional*):
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
passed will be used. Must be in descending order.
sigmas (`List[float]`, *optional*):
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
will be used.
guidance_scale (`float`, *optional*, defaults to 7.5):
A higher guidance scale value encourages the model to generate images closely linked to the text
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
num_videos_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
generation deterministic.
latents (`torch.Tensor`, *optional*):
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor is generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
provided, text embeddings are generated from the `prompt` input argument.
negative_prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`HunyuanVideoPipelineOutput`] instead of a
plain tuple.
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
guidance_rescale (`float`, *optional*, defaults to 0.0):
Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are
Flawed](https://arxiv.org/pdf/2305.08891.pdf). Guidance rescale factor should fix overexposure when
using zero terminal SNR.
clip_skip (`int`, *optional*):
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
the output of the pre-final layer will be used for computing the prompt embeddings.
callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
callback_on_step_end_tensor_inputs (`List`, *optional*):
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
`._callback_tensor_inputs` attribute of your pipeline class.
Examples:
Returns:
[`~HunyuanVideoPipelineOutput`] or `tuple`:
If `return_dict` is `True`, [`HunyuanVideoPipelineOutput`] is returned,
otherwise a `tuple` is returned where the first element is a list with the generated images and the
second element is a list of `bool`s indicating whether the corresponding generated image contains
"not-safe-for-work" (nsfw) content.
"""
callback = kwargs.pop("callback", None)
callback_steps = kwargs.pop("callback_steps", None)
if callback is not None:
deprecate(
"callback",
"1.0.0",
"Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
)
if callback_steps is not None:
deprecate(
"callback_steps",
"1.0.0",
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
)
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
# 0. Default height and width to unet
# height = height or self.transformer.config.sample_size * self.vae_scale_factor
# width = width or self.transformer.config.sample_size * self.vae_scale_factor
# to deal with lora scaling and other possible forward hooks
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt,
height,
width,
video_length,
callback_steps,
negative_prompt,
prompt_embeds,
negative_prompt_embeds,
callback_on_step_end_tensor_inputs,
vae_ver=vae_ver,
)
self._guidance_scale = guidance_scale
self._guidance_rescale = guidance_rescale
self._clip_skip = clip_skip
self._cross_attention_kwargs = cross_attention_kwargs
self._interrupt = False
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = torch.device(f"cuda:{dist.get_rank()}") if dist.is_initialized() else self._execution_device
# 3. Encode input prompt
lora_scale = (
self.cross_attention_kwargs.get("scale", None)
if self.cross_attention_kwargs is not None
else None
)
(
prompt_embeds,
negative_prompt_embeds,
prompt_mask,
negative_prompt_mask,
) = self.encode_prompt(
prompt,
device,
num_videos_per_prompt,
self.do_classifier_free_guidance,
negative_prompt,
prompt_embeds=prompt_embeds,
attention_mask=attention_mask,
negative_prompt_embeds=negative_prompt_embeds,
negative_attention_mask=negative_attention_mask,
lora_scale=lora_scale,
clip_skip=self.clip_skip,
data_type=data_type,
)
if self.text_encoder_2 is not None:
(
prompt_embeds_2,
negative_prompt_embeds_2,
prompt_mask_2,
negative_prompt_mask_2,
) = self.encode_prompt(
prompt,
device,
num_videos_per_prompt,
self.do_classifier_free_guidance,
negative_prompt,
prompt_embeds=None,
attention_mask=None,
negative_prompt_embeds=None,
negative_attention_mask=None,
lora_scale=lora_scale,
clip_skip=self.clip_skip,
text_encoder=self.text_encoder_2,
data_type=data_type,
)
else:
prompt_embeds_2 = None
negative_prompt_embeds_2 = None
prompt_mask_2 = None
negative_prompt_mask_2 = None
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
if self.do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
if prompt_mask is not None:
prompt_mask = torch.cat([negative_prompt_mask, prompt_mask])
if prompt_embeds_2 is not None:
prompt_embeds_2 = torch.cat([negative_prompt_embeds_2, prompt_embeds_2])
if prompt_mask_2 is not None:
prompt_mask_2 = torch.cat([negative_prompt_mask_2, prompt_mask_2])
# 4. Prepare timesteps
extra_set_timesteps_kwargs = self.prepare_extra_func_kwargs(
self.scheduler.set_timesteps, {"n_tokens": n_tokens}
)
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler,
num_inference_steps,
device,
timesteps,
sigmas,
**extra_set_timesteps_kwargs,
)
if "884" in vae_ver:
video_length = (video_length - 1) // 4 + 1
elif "888" in vae_ver:
video_length = (video_length - 1) // 8 + 1
else:
video_length = video_length
# 5. Prepare latent variables
num_channels_latents = self.transformer.config.in_channels
latents = self.prepare_latents(
batch_size * num_videos_per_prompt,
num_channels_latents,
height,
width,
video_length,
prompt_embeds.dtype,
device,
generator,
latents,
)
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_func_kwargs(
self.scheduler.step,
{"generator": generator, "eta": eta},
)
target_dtype = PRECISION_TO_TYPE[self.args.precision]
autocast_enabled = (
target_dtype != torch.float32
) and not self.args.disable_autocast
vae_dtype = PRECISION_TO_TYPE[self.args.vae_precision]
vae_autocast_enabled = (
vae_dtype != torch.float32
) and not self.args.disable_autocast
# 7. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
self._num_timesteps = len(timesteps)
# if is_progress_bar:
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if self.interrupt:
continue
# expand the latents if we are doing classifier free guidance
latent_model_input = (
torch.cat([latents] * 2)
if self.do_classifier_free_guidance
else latents
)
latent_model_input = self.scheduler.scale_model_input(
latent_model_input, t
)
t_expand = t.repeat(latent_model_input.shape[0])
guidance_expand = (
torch.tensor(
[embedded_guidance_scale] * latent_model_input.shape[0],
dtype=torch.float32,
device=device,
).to(target_dtype)
* 1000.0
if embedded_guidance_scale is not None
else None
)
# predict the noise residual
with torch.autocast(
device_type="cuda", dtype=target_dtype, enabled=autocast_enabled
):
noise_pred = self.transformer( # For an input image (129, 192, 336) (1, 256, 256)
latent_model_input, # [2, 16, 33, 24, 42]
t_expand, # [2]
text_states=prompt_embeds, # [2, 256, 4096]
text_mask=prompt_mask, # [2, 256]
text_states_2=prompt_embeds_2, # [2, 768]
freqs_cos=freqs_cis[0], # [seqlen, head_dim]
freqs_sin=freqs_cis[1], # [seqlen, head_dim]
guidance=guidance_expand,
return_dict=True,
)[
"x"
]
# perform guidance
if self.do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + self.guidance_scale * (
noise_pred_text - noise_pred_uncond
)
if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
noise_pred = rescale_noise_cfg(
noise_pred,
noise_pred_text,
guidance_rescale=self.guidance_rescale,
)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(
noise_pred, t, latents, **extra_step_kwargs, return_dict=False
)[0]
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
latents = callback_outputs.pop("latents", latents)
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
negative_prompt_embeds = callback_outputs.pop(
"negative_prompt_embeds", negative_prompt_embeds
)
# call the callback, if provided
if i == len(timesteps) - 1 or (
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
):
if progress_bar is not None:
progress_bar.update()
if callback is not None and i % callback_steps == 0:
step_idx = i // getattr(self.scheduler, "order", 1)
callback(step_idx, t, latents)
if not output_type == "latent":
expand_temporal_dim = False
if len(latents.shape) == 4:
if isinstance(self.vae, AutoencoderKLCausal3D):
latents = latents.unsqueeze(2)
expand_temporal_dim = True
elif len(latents.shape) == 5:
pass
else:
raise ValueError(
f"Only support latents with shape (b, c, h, w) or (b, c, f, h, w), but got {latents.shape}."
)
if (
hasattr(self.vae.config, "shift_factor")
and self.vae.config.shift_factor
):
latents = (
latents / self.vae.config.scaling_factor
+ self.vae.config.shift_factor
)
else:
latents = latents / self.vae.config.scaling_factor
with torch.autocast(
device_type="cuda", dtype=vae_dtype, enabled=vae_autocast_enabled
):
if enable_tiling:
self.vae.enable_tiling()
image = self.vae.decode(
latents, return_dict=False, generator=generator
)[0]
else:
image = self.vae.decode(
latents, return_dict=False, generator=generator
)[0]
if expand_temporal_dim or image.shape[2] == 1:
image = image.squeeze(2)
else:
image = latents
image = (image / 2 + 0.5).clamp(0, 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
image = image.cpu().float()
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return image
return HunyuanVideoPipelineOutput(videos=image)