jbilcke-hf's picture
jbilcke-hf HF staff
Upload 31 files
be29b01 verified
import argparse
from .constants import *
import re
from .modules.models import HUNYUAN_VIDEO_CONFIG
def parse_args(namespace=None):
parser = argparse.ArgumentParser(description="HunyuanVideo inference script")
parser = add_network_args(parser)
parser = add_extra_models_args(parser)
parser = add_denoise_schedule_args(parser)
parser = add_inference_args(parser)
parser = add_parallel_args(parser)
args = parser.parse_args(namespace=namespace)
args = sanity_check_args(args)
return args
def add_network_args(parser: argparse.ArgumentParser):
group = parser.add_argument_group(title="HunyuanVideo network args")
# Main model
group.add_argument(
"--model",
type=str,
choices=list(HUNYUAN_VIDEO_CONFIG.keys()),
default="HYVideo-T/2-cfgdistill",
)
group.add_argument(
"--latent-channels",
type=str,
default=16,
help="Number of latent channels of DiT. If None, it will be determined by `vae`. If provided, "
"it still needs to match the latent channels of the VAE model.",
)
group.add_argument(
"--precision",
type=str,
default="bf16",
choices=PRECISIONS,
help="Precision mode. Options: fp32, fp16, bf16. Applied to the backbone model and optimizer.",
)
# RoPE
group.add_argument(
"--rope-theta", type=int, default=256, help="Theta used in RoPE."
)
return parser
def add_extra_models_args(parser: argparse.ArgumentParser):
group = parser.add_argument_group(
title="Extra models args, including vae, text encoders and tokenizers)"
)
# - VAE
group.add_argument(
"--vae",
type=str,
default="884-16c-hy",
choices=list(VAE_PATH),
help="Name of the VAE model.",
)
group.add_argument(
"--vae-precision",
type=str,
default="fp16",
choices=PRECISIONS,
help="Precision mode for the VAE model.",
)
group.add_argument(
"--vae-tiling",
action="store_true",
help="Enable tiling for the VAE model to save GPU memory.",
)
group.set_defaults(vae_tiling=True)
group.add_argument(
"--text-encoder",
type=str,
default="llm",
choices=list(TEXT_ENCODER_PATH),
help="Name of the text encoder model.",
)
group.add_argument(
"--text-encoder-precision",
type=str,
default="fp16",
choices=PRECISIONS,
help="Precision mode for the text encoder model.",
)
group.add_argument(
"--text-states-dim",
type=int,
default=4096,
help="Dimension of the text encoder hidden states.",
)
group.add_argument(
"--text-len", type=int, default=256, help="Maximum length of the text input."
)
group.add_argument(
"--tokenizer",
type=str,
default="llm",
choices=list(TOKENIZER_PATH),
help="Name of the tokenizer model.",
)
group.add_argument(
"--prompt-template",
type=str,
default="dit-llm-encode",
choices=PROMPT_TEMPLATE,
help="Image prompt template for the decoder-only text encoder model.",
)
group.add_argument(
"--prompt-template-video",
type=str,
default="dit-llm-encode-video",
choices=PROMPT_TEMPLATE,
help="Video prompt template for the decoder-only text encoder model.",
)
group.add_argument(
"--hidden-state-skip-layer",
type=int,
default=2,
help="Skip layer for hidden states.",
)
group.add_argument(
"--apply-final-norm",
action="store_true",
help="Apply final normalization to the used text encoder hidden states.",
)
# - CLIP
group.add_argument(
"--text-encoder-2",
type=str,
default="clipL",
choices=list(TEXT_ENCODER_PATH),
help="Name of the second text encoder model.",
)
group.add_argument(
"--text-encoder-precision-2",
type=str,
default="fp16",
choices=PRECISIONS,
help="Precision mode for the second text encoder model.",
)
group.add_argument(
"--text-states-dim-2",
type=int,
default=768,
help="Dimension of the second text encoder hidden states.",
)
group.add_argument(
"--tokenizer-2",
type=str,
default="clipL",
choices=list(TOKENIZER_PATH),
help="Name of the second tokenizer model.",
)
group.add_argument(
"--text-len-2",
type=int,
default=77,
help="Maximum length of the second text input.",
)
return parser
def add_denoise_schedule_args(parser: argparse.ArgumentParser):
group = parser.add_argument_group(title="Denoise schedule args")
group.add_argument(
"--denoise-type",
type=str,
default="flow",
help="Denoise type for noised inputs.",
)
# Flow Matching
group.add_argument(
"--flow-shift",
type=float,
default=7.0,
help="Shift factor for flow matching schedulers.",
)
group.add_argument(
"--flow-reverse",
action="store_true",
help="If reverse, learning/sampling from t=1 -> t=0.",
)
group.add_argument(
"--flow-solver",
type=str,
default="euler",
help="Solver for flow matching.",
)
group.add_argument(
"--use-linear-quadratic-schedule",
action="store_true",
help="Use linear quadratic schedule for flow matching."
"Following MovieGen (https://ai.meta.com/static-resource/movie-gen-research-paper)",
)
group.add_argument(
"--linear-schedule-end",
type=int,
default=25,
help="End step for linear quadratic schedule for flow matching.",
)
return parser
def add_inference_args(parser: argparse.ArgumentParser):
group = parser.add_argument_group(title="Inference args")
# ======================== Model loads ========================
group.add_argument(
"--model-base",
type=str,
default=".",
help="Root path of all the models, including t2v models and extra models.",
)
group.add_argument(
"--dit-weight",
type=str,
default="./hunyuan-video-t2v-720p/transformers/mp_rank_00_model_states.pt",
help="Path to the HunyuanVideo model. If None, search the model in the args.model_root."
"1. If it is a file, load the model directly."
"2. If it is a directory, search the model in the directory. Support two types of models: "
"1) named `pytorch_model_*.pt`"
"2) named `*_model_states.pt`, where * can be `mp_rank_00`.",
)
group.add_argument(
"--model-resolution",
type=str,
default="540p",
choices=["540p", "720p"],
help="Root path of all the models, including t2v models and extra models.",
)
group.add_argument(
"--load-key",
type=str,
default="module",
help="Key to load the model states. 'module' for the main model, 'ema' for the EMA model.",
)
group.add_argument(
"--use-cpu-offload",
action="store_true",
help="Use CPU offload for the model load.",
)
# ======================== Inference general setting ========================
group.add_argument(
"--batch-size",
type=int,
default=1,
help="Batch size for inference and evaluation.",
)
group.add_argument(
"--infer-steps",
type=int,
default=50,
help="Number of denoising steps for inference.",
)
group.add_argument(
"--disable-autocast",
action="store_true",
help="Disable autocast for denoising loop and vae decoding in pipeline sampling.",
)
group.add_argument(
"--save-path",
type=str,
default="./results",
help="Path to save the generated samples.",
)
group.add_argument(
"--save-path-suffix",
type=str,
default="",
help="Suffix for the directory of saved samples.",
)
group.add_argument(
"--name-suffix",
type=str,
default="",
help="Suffix for the names of saved samples.",
)
group.add_argument(
"--num-videos",
type=int,
default=1,
help="Number of videos to generate for each prompt.",
)
# ---sample size---
group.add_argument(
"--video-size",
type=int,
nargs="+",
default=(720, 1280),
help="Video size for training. If a single value is provided, it will be used for both height "
"and width. If two values are provided, they will be used for height and width "
"respectively.",
)
group.add_argument(
"--video-length",
type=int,
default=129,
help="How many frames to sample from a video. if using 3d vae, the number should be 4n+1",
)
# --- prompt ---
group.add_argument(
"--prompt",
type=str,
default=None,
help="Prompt for sampling during evaluation.",
)
group.add_argument(
"--seed-type",
type=str,
default="auto",
choices=["file", "random", "fixed", "auto"],
help="Seed type for evaluation. If file, use the seed from the CSV file. If random, generate a "
"random seed. If fixed, use the fixed seed given by `--seed`. If auto, `csv` will use the "
"seed column if available, otherwise use the fixed `seed` value. `prompt` will use the "
"fixed `seed` value.",
)
group.add_argument("--seed", type=int, default=None, help="Seed for evaluation.")
# Classifier-Free Guidance
group.add_argument(
"--neg-prompt", type=str, default=None, help="Negative prompt for sampling."
)
group.add_argument(
"--cfg-scale", type=float, default=1.0, help="Classifier free guidance scale."
)
group.add_argument(
"--embedded-cfg-scale",
type=float,
default=6.0,
help="Embeded classifier free guidance scale.",
)
group.add_argument(
"--use-fp8",
action="store_true",
help="Enable use fp8 for inference acceleration."
)
group.add_argument(
"--reproduce",
action="store_true",
help="Enable reproducibility by setting random seeds and deterministic algorithms.",
)
return parser
def add_parallel_args(parser: argparse.ArgumentParser):
group = parser.add_argument_group(title="Parallel args")
# ======================== Model loads ========================
group.add_argument(
"--ulysses-degree",
type=int,
default=1,
help="Ulysses degree.",
)
group.add_argument(
"--ring-degree",
type=int,
default=1,
help="Ulysses degree.",
)
return parser
def sanity_check_args(args):
# VAE channels
vae_pattern = r"\d{2,3}-\d{1,2}c-\w+"
if not re.match(vae_pattern, args.vae):
raise ValueError(
f"Invalid VAE model: {args.vae}. Must be in the format of '{vae_pattern}'."
)
vae_channels = int(args.vae.split("-")[1][:-1])
if args.latent_channels is None:
args.latent_channels = vae_channels
if vae_channels != args.latent_channels:
raise ValueError(
f"Latent channels ({args.latent_channels}) must match the VAE channels ({vae_channels})."
)
return args