jbilcke-hf's picture
jbilcke-hf HF staff
Upload 30 files
f08eddf verified
from typing import Any, List, Tuple, Optional, Union, Dict
from einops import rearrange
import torch
import torch.nn as nn
import torch.nn.functional as F
from diffusers.models import ModelMixin
from diffusers.configuration_utils import ConfigMixin, register_to_config
from .activation_layers import get_activation_layer
from .norm_layers import get_norm_layer
from .embed_layers import TimestepEmbedder, PatchEmbed, TextProjection
from .attenion import attention, parallel_attention, get_cu_seqlens
from .posemb_layers import apply_rotary_emb
from .mlp_layers import MLP, MLPEmbedder, FinalLayer
from .modulate_layers import ModulateDiT, modulate, apply_gate
from .token_refiner import SingleTokenRefiner
class MMDoubleStreamBlock(nn.Module):
"""
A multimodal dit block with seperate modulation for
text and image/video, see more details (SD3): https://arxiv.org/abs/2403.03206
(Flux.1): https://github.com/black-forest-labs/flux
"""
def __init__(
self,
hidden_size: int,
heads_num: int,
mlp_width_ratio: float,
mlp_act_type: str = "gelu_tanh",
qk_norm: bool = True,
qk_norm_type: str = "rms",
qkv_bias: bool = False,
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
):
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.deterministic = False
self.heads_num = heads_num
head_dim = hidden_size // heads_num
mlp_hidden_dim = int(hidden_size * mlp_width_ratio)
self.img_mod = ModulateDiT(
hidden_size,
factor=6,
act_layer=get_activation_layer("silu"),
**factory_kwargs,
)
self.img_norm1 = nn.LayerNorm(
hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs
)
self.img_attn_qkv = nn.Linear(
hidden_size, hidden_size * 3, bias=qkv_bias, **factory_kwargs
)
qk_norm_layer = get_norm_layer(qk_norm_type)
self.img_attn_q_norm = (
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs)
if qk_norm
else nn.Identity()
)
self.img_attn_k_norm = (
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs)
if qk_norm
else nn.Identity()
)
self.img_attn_proj = nn.Linear(
hidden_size, hidden_size, bias=qkv_bias, **factory_kwargs
)
self.img_norm2 = nn.LayerNorm(
hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs
)
self.img_mlp = MLP(
hidden_size,
mlp_hidden_dim,
act_layer=get_activation_layer(mlp_act_type),
bias=True,
**factory_kwargs,
)
self.txt_mod = ModulateDiT(
hidden_size,
factor=6,
act_layer=get_activation_layer("silu"),
**factory_kwargs,
)
self.txt_norm1 = nn.LayerNorm(
hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs
)
self.txt_attn_qkv = nn.Linear(
hidden_size, hidden_size * 3, bias=qkv_bias, **factory_kwargs
)
self.txt_attn_q_norm = (
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs)
if qk_norm
else nn.Identity()
)
self.txt_attn_k_norm = (
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs)
if qk_norm
else nn.Identity()
)
self.txt_attn_proj = nn.Linear(
hidden_size, hidden_size, bias=qkv_bias, **factory_kwargs
)
self.txt_norm2 = nn.LayerNorm(
hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs
)
self.txt_mlp = MLP(
hidden_size,
mlp_hidden_dim,
act_layer=get_activation_layer(mlp_act_type),
bias=True,
**factory_kwargs,
)
self.hybrid_seq_parallel_attn = None
def enable_deterministic(self):
self.deterministic = True
def disable_deterministic(self):
self.deterministic = False
def forward(
self,
img: torch.Tensor,
txt: torch.Tensor,
vec: torch.Tensor,
cu_seqlens_q: Optional[torch.Tensor] = None,
cu_seqlens_kv: Optional[torch.Tensor] = None,
max_seqlen_q: Optional[int] = None,
max_seqlen_kv: Optional[int] = None,
freqs_cis: tuple = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
(
img_mod1_shift,
img_mod1_scale,
img_mod1_gate,
img_mod2_shift,
img_mod2_scale,
img_mod2_gate,
) = self.img_mod(vec).chunk(6, dim=-1)
(
txt_mod1_shift,
txt_mod1_scale,
txt_mod1_gate,
txt_mod2_shift,
txt_mod2_scale,
txt_mod2_gate,
) = self.txt_mod(vec).chunk(6, dim=-1)
# Prepare image for attention.
img_modulated = self.img_norm1(img)
img_modulated = modulate(
img_modulated, shift=img_mod1_shift, scale=img_mod1_scale
)
img_qkv = self.img_attn_qkv(img_modulated)
img_q, img_k, img_v = rearrange(
img_qkv, "B L (K H D) -> K B L H D", K=3, H=self.heads_num
)
# Apply QK-Norm if needed
img_q = self.img_attn_q_norm(img_q).to(img_v)
img_k = self.img_attn_k_norm(img_k).to(img_v)
# Apply RoPE if needed.
if freqs_cis is not None:
img_qq, img_kk = apply_rotary_emb(img_q, img_k, freqs_cis, head_first=False)
assert (
img_qq.shape == img_q.shape and img_kk.shape == img_k.shape
), f"img_kk: {img_qq.shape}, img_q: {img_q.shape}, img_kk: {img_kk.shape}, img_k: {img_k.shape}"
img_q, img_k = img_qq, img_kk
# Prepare txt for attention.
txt_modulated = self.txt_norm1(txt)
txt_modulated = modulate(
txt_modulated, shift=txt_mod1_shift, scale=txt_mod1_scale
)
txt_qkv = self.txt_attn_qkv(txt_modulated)
txt_q, txt_k, txt_v = rearrange(
txt_qkv, "B L (K H D) -> K B L H D", K=3, H=self.heads_num
)
# Apply QK-Norm if needed.
txt_q = self.txt_attn_q_norm(txt_q).to(txt_v)
txt_k = self.txt_attn_k_norm(txt_k).to(txt_v)
# Run actual attention.
q = torch.cat((img_q, txt_q), dim=1)
k = torch.cat((img_k, txt_k), dim=1)
v = torch.cat((img_v, txt_v), dim=1)
assert (
cu_seqlens_q.shape[0] == 2 * img.shape[0] + 1
), f"cu_seqlens_q.shape:{cu_seqlens_q.shape}, img.shape[0]:{img.shape[0]}"
# attention computation start
if not self.hybrid_seq_parallel_attn:
attn = attention(
q,
k,
v,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_kv=cu_seqlens_kv,
max_seqlen_q=max_seqlen_q,
max_seqlen_kv=max_seqlen_kv,
batch_size=img_k.shape[0],
)
else:
attn = parallel_attention(
self.hybrid_seq_parallel_attn,
q,
k,
v,
img_q_len=img_q.shape[1],
img_kv_len=img_k.shape[1],
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_kv=cu_seqlens_kv
)
# attention computation end
img_attn, txt_attn = attn[:, : img.shape[1]], attn[:, img.shape[1] :]
# Calculate the img bloks.
img = img + apply_gate(self.img_attn_proj(img_attn), gate=img_mod1_gate)
img = img + apply_gate(
self.img_mlp(
modulate(
self.img_norm2(img), shift=img_mod2_shift, scale=img_mod2_scale
)
),
gate=img_mod2_gate,
)
# Calculate the txt bloks.
txt = txt + apply_gate(self.txt_attn_proj(txt_attn), gate=txt_mod1_gate)
txt = txt + apply_gate(
self.txt_mlp(
modulate(
self.txt_norm2(txt), shift=txt_mod2_shift, scale=txt_mod2_scale
)
),
gate=txt_mod2_gate,
)
return img, txt
class MMSingleStreamBlock(nn.Module):
"""
A DiT block with parallel linear layers as described in
https://arxiv.org/abs/2302.05442 and adapted modulation interface.
Also refer to (SD3): https://arxiv.org/abs/2403.03206
(Flux.1): https://github.com/black-forest-labs/flux
"""
def __init__(
self,
hidden_size: int,
heads_num: int,
mlp_width_ratio: float = 4.0,
mlp_act_type: str = "gelu_tanh",
qk_norm: bool = True,
qk_norm_type: str = "rms",
qk_scale: float = None,
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
):
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.deterministic = False
self.hidden_size = hidden_size
self.heads_num = heads_num
head_dim = hidden_size // heads_num
mlp_hidden_dim = int(hidden_size * mlp_width_ratio)
self.mlp_hidden_dim = mlp_hidden_dim
self.scale = qk_scale or head_dim ** -0.5
# qkv and mlp_in
self.linear1 = nn.Linear(
hidden_size, hidden_size * 3 + mlp_hidden_dim, **factory_kwargs
)
# proj and mlp_out
self.linear2 = nn.Linear(
hidden_size + mlp_hidden_dim, hidden_size, **factory_kwargs
)
qk_norm_layer = get_norm_layer(qk_norm_type)
self.q_norm = (
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs)
if qk_norm
else nn.Identity()
)
self.k_norm = (
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs)
if qk_norm
else nn.Identity()
)
self.pre_norm = nn.LayerNorm(
hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs
)
self.mlp_act = get_activation_layer(mlp_act_type)()
self.modulation = ModulateDiT(
hidden_size,
factor=3,
act_layer=get_activation_layer("silu"),
**factory_kwargs,
)
self.hybrid_seq_parallel_attn = None
def enable_deterministic(self):
self.deterministic = True
def disable_deterministic(self):
self.deterministic = False
def forward(
self,
x: torch.Tensor,
vec: torch.Tensor,
txt_len: int,
cu_seqlens_q: Optional[torch.Tensor] = None,
cu_seqlens_kv: Optional[torch.Tensor] = None,
max_seqlen_q: Optional[int] = None,
max_seqlen_kv: Optional[int] = None,
freqs_cis: Tuple[torch.Tensor, torch.Tensor] = None,
) -> torch.Tensor:
mod_shift, mod_scale, mod_gate = self.modulation(vec).chunk(3, dim=-1)
x_mod = modulate(self.pre_norm(x), shift=mod_shift, scale=mod_scale)
qkv, mlp = torch.split(
self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1
)
q, k, v = rearrange(qkv, "B L (K H D) -> K B L H D", K=3, H=self.heads_num)
# Apply QK-Norm if needed.
q = self.q_norm(q).to(v)
k = self.k_norm(k).to(v)
# Apply RoPE if needed.
if freqs_cis is not None:
img_q, txt_q = q[:, :-txt_len, :, :], q[:, -txt_len:, :, :]
img_k, txt_k = k[:, :-txt_len, :, :], k[:, -txt_len:, :, :]
img_qq, img_kk = apply_rotary_emb(img_q, img_k, freqs_cis, head_first=False)
assert (
img_qq.shape == img_q.shape and img_kk.shape == img_k.shape
), f"img_kk: {img_qq.shape}, img_q: {img_q.shape}, img_kk: {img_kk.shape}, img_k: {img_k.shape}"
img_q, img_k = img_qq, img_kk
q = torch.cat((img_q, txt_q), dim=1)
k = torch.cat((img_k, txt_k), dim=1)
# Compute attention.
assert (
cu_seqlens_q.shape[0] == 2 * x.shape[0] + 1
), f"cu_seqlens_q.shape:{cu_seqlens_q.shape}, x.shape[0]:{x.shape[0]}"
# attention computation start
if not self.hybrid_seq_parallel_attn:
attn = attention(
q,
k,
v,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_kv=cu_seqlens_kv,
max_seqlen_q=max_seqlen_q,
max_seqlen_kv=max_seqlen_kv,
batch_size=x.shape[0],
)
else:
attn = parallel_attention(
self.hybrid_seq_parallel_attn,
q,
k,
v,
img_q_len=img_q.shape[1],
img_kv_len=img_k.shape[1],
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_kv=cu_seqlens_kv
)
# attention computation end
# Compute activation in mlp stream, cat again and run second linear layer.
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
return x + apply_gate(output, gate=mod_gate)
class HYVideoDiffusionTransformer(ModelMixin, ConfigMixin):
"""
HunyuanVideo Transformer backbone
Inherited from ModelMixin and ConfigMixin for compatibility with diffusers' sampler StableDiffusionPipeline.
Reference:
[1] Flux.1: https://github.com/black-forest-labs/flux
[2] MMDiT: http://arxiv.org/abs/2403.03206
Parameters
----------
args: argparse.Namespace
The arguments parsed by argparse.
patch_size: list
The size of the patch.
in_channels: int
The number of input channels.
out_channels: int
The number of output channels.
hidden_size: int
The hidden size of the transformer backbone.
heads_num: int
The number of attention heads.
mlp_width_ratio: float
The ratio of the hidden size of the MLP in the transformer block.
mlp_act_type: str
The activation function of the MLP in the transformer block.
depth_double_blocks: int
The number of transformer blocks in the double blocks.
depth_single_blocks: int
The number of transformer blocks in the single blocks.
rope_dim_list: list
The dimension of the rotary embedding for t, h, w.
qkv_bias: bool
Whether to use bias in the qkv linear layer.
qk_norm: bool
Whether to use qk norm.
qk_norm_type: str
The type of qk norm.
guidance_embed: bool
Whether to use guidance embedding for distillation.
text_projection: str
The type of the text projection, default is single_refiner.
use_attention_mask: bool
Whether to use attention mask for text encoder.
dtype: torch.dtype
The dtype of the model.
device: torch.device
The device of the model.
"""
@register_to_config
def __init__(
self,
args: Any,
patch_size: list = [1, 2, 2],
in_channels: int = 4, # Should be VAE.config.latent_channels.
out_channels: int = None,
hidden_size: int = 3072,
heads_num: int = 24,
mlp_width_ratio: float = 4.0,
mlp_act_type: str = "gelu_tanh",
mm_double_blocks_depth: int = 20,
mm_single_blocks_depth: int = 40,
rope_dim_list: List[int] = [16, 56, 56],
qkv_bias: bool = True,
qk_norm: bool = True,
qk_norm_type: str = "rms",
guidance_embed: bool = False, # For modulation.
text_projection: str = "single_refiner",
use_attention_mask: bool = True,
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
):
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.patch_size = patch_size
self.in_channels = in_channels
self.out_channels = in_channels if out_channels is None else out_channels
self.unpatchify_channels = self.out_channels
self.guidance_embed = guidance_embed
self.rope_dim_list = rope_dim_list
# Text projection. Default to linear projection.
# Alternative: TokenRefiner. See more details (LI-DiT): http://arxiv.org/abs/2406.11831
self.use_attention_mask = use_attention_mask
self.text_projection = text_projection
self.text_states_dim = args.text_states_dim
self.text_states_dim_2 = args.text_states_dim_2
if hidden_size % heads_num != 0:
raise ValueError(
f"Hidden size {hidden_size} must be divisible by heads_num {heads_num}"
)
pe_dim = hidden_size // heads_num
if sum(rope_dim_list) != pe_dim:
raise ValueError(
f"Got {rope_dim_list} but expected positional dim {pe_dim}"
)
self.hidden_size = hidden_size
self.heads_num = heads_num
# image projection
self.img_in = PatchEmbed(
self.patch_size, self.in_channels, self.hidden_size, **factory_kwargs
)
# text projection
if self.text_projection == "linear":
self.txt_in = TextProjection(
self.text_states_dim,
self.hidden_size,
get_activation_layer("silu"),
**factory_kwargs,
)
elif self.text_projection == "single_refiner":
self.txt_in = SingleTokenRefiner(
self.text_states_dim, hidden_size, heads_num, depth=2, **factory_kwargs
)
else:
raise NotImplementedError(
f"Unsupported text_projection: {self.text_projection}"
)
# time modulation
self.time_in = TimestepEmbedder(
self.hidden_size, get_activation_layer("silu"), **factory_kwargs
)
# text modulation
self.vector_in = MLPEmbedder(
self.text_states_dim_2, self.hidden_size, **factory_kwargs
)
# guidance modulation
self.guidance_in = (
TimestepEmbedder(
self.hidden_size, get_activation_layer("silu"), **factory_kwargs
)
if guidance_embed
else None
)
# double blocks
self.double_blocks = nn.ModuleList(
[
MMDoubleStreamBlock(
self.hidden_size,
self.heads_num,
mlp_width_ratio=mlp_width_ratio,
mlp_act_type=mlp_act_type,
qk_norm=qk_norm,
qk_norm_type=qk_norm_type,
qkv_bias=qkv_bias,
**factory_kwargs,
)
for _ in range(mm_double_blocks_depth)
]
)
# single blocks
self.single_blocks = nn.ModuleList(
[
MMSingleStreamBlock(
self.hidden_size,
self.heads_num,
mlp_width_ratio=mlp_width_ratio,
mlp_act_type=mlp_act_type,
qk_norm=qk_norm,
qk_norm_type=qk_norm_type,
**factory_kwargs,
)
for _ in range(mm_single_blocks_depth)
]
)
self.final_layer = FinalLayer(
self.hidden_size,
self.patch_size,
self.out_channels,
get_activation_layer("silu"),
**factory_kwargs,
)
def enable_deterministic(self):
for block in self.double_blocks:
block.enable_deterministic()
for block in self.single_blocks:
block.enable_deterministic()
def disable_deterministic(self):
for block in self.double_blocks:
block.disable_deterministic()
for block in self.single_blocks:
block.disable_deterministic()
def forward(
self,
x: torch.Tensor,
t: torch.Tensor, # Should be in range(0, 1000).
text_states: torch.Tensor = None,
text_mask: torch.Tensor = None, # Now we don't use it.
text_states_2: Optional[torch.Tensor] = None, # Text embedding for modulation.
freqs_cos: Optional[torch.Tensor] = None,
freqs_sin: Optional[torch.Tensor] = None,
guidance: torch.Tensor = None, # Guidance for modulation, should be cfg_scale x 1000.
return_dict: bool = True,
) -> Union[torch.Tensor, Dict[str, torch.Tensor]]:
out = {}
img = x
txt = text_states
_, _, ot, oh, ow = x.shape
tt, th, tw = (
ot // self.patch_size[0],
oh // self.patch_size[1],
ow // self.patch_size[2],
)
# Prepare modulation vectors.
vec = self.time_in(t)
# text modulation
vec = vec + self.vector_in(text_states_2)
# guidance modulation
if self.guidance_embed:
if guidance is None:
raise ValueError(
"Didn't get guidance strength for guidance distilled model."
)
# our timestep_embedding is merged into guidance_in(TimestepEmbedder)
vec = vec + self.guidance_in(guidance)
# Embed image and text.
img = self.img_in(img)
if self.text_projection == "linear":
txt = self.txt_in(txt)
elif self.text_projection == "single_refiner":
txt = self.txt_in(txt, t, text_mask if self.use_attention_mask else None)
else:
raise NotImplementedError(
f"Unsupported text_projection: {self.text_projection}"
)
txt_seq_len = txt.shape[1]
img_seq_len = img.shape[1]
# Compute cu_squlens and max_seqlen for flash attention
cu_seqlens_q = get_cu_seqlens(text_mask, img_seq_len)
cu_seqlens_kv = cu_seqlens_q
max_seqlen_q = img_seq_len + txt_seq_len
max_seqlen_kv = max_seqlen_q
freqs_cis = (freqs_cos, freqs_sin) if freqs_cos is not None else None
# --------------------- Pass through DiT blocks ------------------------
for _, block in enumerate(self.double_blocks):
double_block_args = [
img,
txt,
vec,
cu_seqlens_q,
cu_seqlens_kv,
max_seqlen_q,
max_seqlen_kv,
freqs_cis,
]
img, txt = block(*double_block_args)
# Merge txt and img to pass through single stream blocks.
x = torch.cat((img, txt), 1)
if len(self.single_blocks) > 0:
for _, block in enumerate(self.single_blocks):
single_block_args = [
x,
vec,
txt_seq_len,
cu_seqlens_q,
cu_seqlens_kv,
max_seqlen_q,
max_seqlen_kv,
(freqs_cos, freqs_sin),
]
x = block(*single_block_args)
img = x[:, :img_seq_len, ...]
# ---------------------------- Final layer ------------------------------
img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels)
img = self.unpatchify(img, tt, th, tw)
if return_dict:
out["x"] = img
return out
return img
def unpatchify(self, x, t, h, w):
"""
x: (N, T, patch_size**2 * C)
imgs: (N, H, W, C)
"""
c = self.unpatchify_channels
pt, ph, pw = self.patch_size
assert t * h * w == x.shape[1]
x = x.reshape(shape=(x.shape[0], t, h, w, c, pt, ph, pw))
x = torch.einsum("nthwcopq->nctohpwq", x)
imgs = x.reshape(shape=(x.shape[0], c, t * pt, h * ph, w * pw))
return imgs
def params_count(self):
counts = {
"double": sum(
[
sum(p.numel() for p in block.img_attn_qkv.parameters())
+ sum(p.numel() for p in block.img_attn_proj.parameters())
+ sum(p.numel() for p in block.img_mlp.parameters())
+ sum(p.numel() for p in block.txt_attn_qkv.parameters())
+ sum(p.numel() for p in block.txt_attn_proj.parameters())
+ sum(p.numel() for p in block.txt_mlp.parameters())
for block in self.double_blocks
]
),
"single": sum(
[
sum(p.numel() for p in block.linear1.parameters())
+ sum(p.numel() for p in block.linear2.parameters())
for block in self.single_blocks
]
),
"total": sum(p.numel() for p in self.parameters()),
}
counts["attn+mlp"] = counts["double"] + counts["single"]
return counts
#################################################################################
# HunyuanVideo Configs #
#################################################################################
HUNYUAN_VIDEO_CONFIG = {
"HYVideo-T/2": {
"mm_double_blocks_depth": 20,
"mm_single_blocks_depth": 40,
"rope_dim_list": [16, 56, 56],
"hidden_size": 3072,
"heads_num": 24,
"mlp_width_ratio": 4,
},
"HYVideo-T/2-cfgdistill": {
"mm_double_blocks_depth": 20,
"mm_single_blocks_depth": 40,
"rope_dim_list": [16, 56, 56],
"hidden_size": 3072,
"heads_num": 24,
"mlp_width_ratio": 4,
"guidance_embed": True,
},
}