import os from pathlib import Path from einops import rearrange import torch import torchvision import numpy as np import imageio CODE_SUFFIXES = { ".py", # Python codes ".sh", # Shell scripts ".yaml", ".yml", # Configuration files } def safe_dir(path): """ Create a directory (or the parent directory of a file) if it does not exist. Args: path (str or Path): Path to the directory. Returns: path (Path): Path object of the directory. """ path = Path(path) path.mkdir(exist_ok=True, parents=True) return path def safe_file(path): """ Create the parent directory of a file if it does not exist. Args: path (str or Path): Path to the file. Returns: path (Path): Path object of the file. """ path = Path(path) path.parent.mkdir(exist_ok=True, parents=True) return path def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=1, fps=24): """save videos by video tensor copy from https://github.com/guoyww/AnimateDiff/blob/e92bd5671ba62c0d774a32951453e328018b7c5b/animatediff/utils/util.py#L61 Args: videos (torch.Tensor): video tensor predicted by the model path (str): path to save video rescale (bool, optional): rescale the video tensor from [-1, 1] to . Defaults to False. n_rows (int, optional): Defaults to 1. fps (int, optional): video save fps. Defaults to 8. """ videos = rearrange(videos, "b c t h w -> t b c h w") outputs = [] for x in videos: x = torchvision.utils.make_grid(x, nrow=n_rows) x = x.transpose(0, 1).transpose(1, 2).squeeze(-1) if rescale: x = (x + 1.0) / 2.0 # -1,1 -> 0,1 x = torch.clamp(x, 0, 1) x = (x * 255).numpy().astype(np.uint8) outputs.append(x) os.makedirs(os.path.dirname(path), exist_ok=True) imageio.mimsave(path, outputs, fps=fps)