HunyuanVideo-HFIE / handler.py
jbilcke-hf's picture
jbilcke-hf HF staff
Update handler.py
c55eec4 verified
raw
history blame
12.5 kB
from typing import Dict, Any
import os
import shutil
from pathlib import Path
import time
from datetime import datetime
import argparse
from loguru import logger
from hyvideo.utils.file_utils import save_videos_grid
from hyvideo.inference import HunyuanVideoSampler
from hyvideo.constants import NEGATIVE_PROMPT
# Configure logger
logger.add("handler_debug.log", rotation="500 MB")
DEFAULT_RESOLUTION = "720p"
DEFAULT_WIDTH = 1280
DEFAULT_HEIGHT = 720
DEFAULT_NB_FRAMES = (4 * 30) + 1 # or 129 (note: hunyan requires an extra +1 frame)
DEFAULT_NB_STEPS = 22 # or 50
DEFAULT_FPS = 24
def setup_vae_path(vae_path: Path) -> Path:
"""Create a temporary directory with correctly named VAE config file"""
tmp_vae_dir = Path("/tmp/vae")
if tmp_vae_dir.exists():
shutil.rmtree(tmp_vae_dir)
tmp_vae_dir.mkdir(parents=True)
# Copy files to temp directory
logger.info(f"Setting up VAE in temporary directory: {tmp_vae_dir}")
# Copy and rename config file
original_config = vae_path / "hunyuan-video-t2v-720p_vae_config.json"
new_config = tmp_vae_dir / "config.json"
shutil.copy2(original_config, new_config)
logger.info(f"Copied VAE config from {original_config} to {new_config}")
# Copy model file
original_model = vae_path / "pytorch_model.pt"
new_model = tmp_vae_dir / "pytorch_model.pt"
shutil.copy2(original_model, new_model)
logger.info(f"Copied VAE model from {original_model} to {new_model}")
return tmp_vae_dir
def get_default_args():
"""Create default arguments instead of parsing from command line"""
parser = argparse.ArgumentParser()
# Model configuration
parser.add_argument("--model", type=str, default="HYVideo-T/2-cfgdistill")
parser.add_argument("--model-resolution", type=str, default=DEFAULT_RESOLUTION, choices=["540p", "720p"])
parser.add_argument("--latent-channels", type=int, default=16)
parser.add_argument("--precision", type=str, default="bf16", choices=["bf16", "fp32", "fp16"])
parser.add_argument("--rope-theta", type=int, default=256)
parser.add_argument("--load-key", type=str, default="module")
parser.add_argument("--use-fp8", action="store_true", default=False)
# VAE settings
parser.add_argument("--vae", type=str, default="884-16c-hy")
parser.add_argument("--vae-precision", type=str, default="fp16")
parser.add_argument("--vae-tiling", action="store_true", default=True)
# Text encoder settings
parser.add_argument("--text-encoder", type=str, default="llm")
parser.add_argument("--text-encoder-precision", type=str, default="fp16")
parser.add_argument("--text-states-dim", type=int, default=4096)
parser.add_argument("--text-len", type=int, default=256)
parser.add_argument("--tokenizer", type=str, default="llm")
# Prompt template settings
parser.add_argument("--prompt-template", type=str, default="dit-llm-encode")
parser.add_argument("--prompt-template-video", type=str, default="dit-llm-encode-video")
# Additional text encoder settings
parser.add_argument("--hidden-state-skip-layer", type=int, default=2)
parser.add_argument("--apply-final-norm", action="store_true")
parser.add_argument("--text-encoder-2", type=str, default="clipL")
parser.add_argument("--text-encoder-precision-2", type=str, default="fp16")
parser.add_argument("--text-states-dim-2", type=int, default=768)
parser.add_argument("--tokenizer-2", type=str, default="clipL")
parser.add_argument("--text-len-2", type=int, default=77)
# Model architecture settings
parser.add_argument("--hidden-size", type=int, default=1024)
parser.add_argument("--heads-num", type=int, default=16)
parser.add_argument("--layers-num", type=int, default=24)
parser.add_argument("--mlp-ratio", type=float, default=4.0)
parser.add_argument("--use-guidance-net", action="store_true", default=True)
# Inference settings
parser.add_argument("--denoise-type", type=str, default="flow")
parser.add_argument("--flow-shift", type=float, default=7.0)
parser.add_argument("--flow-reverse", action="store_true", default=True)
parser.add_argument("--flow-solver", type=str, default="euler")
parser.add_argument("--use-linear-quadratic-schedule", action="store_true")
parser.add_argument("--linear-schedule-end", type=int, default=25)
# Hardware settings
parser.add_argument("--use-cpu-offload", action="store_true", default=False)
parser.add_argument("--batch-size", type=int, default=1)
parser.add_argument("--infer-steps", type=int, default=DEFAULT_NB_STEPS)
parser.add_argument("--disable-autocast", action="store_true")
# Output settings
parser.add_argument("--save-path", type=str, default="outputs")
parser.add_argument("--save-path-suffix", type=str, default="")
parser.add_argument("--name-suffix", type=str, default="")
# Generation settings
parser.add_argument("--num-videos", type=int, default=1)
parser.add_argument("--video-size", nargs="+", type=int, default=[DEFAULT_HEIGHT, DEFAULT_WIDTH])
parser.add_argument("--video-length", type=int, default=DEFAULT_NB_FRAMES)
parser.add_argument("--prompt", type=str, default=None)
parser.add_argument("--seed-type", type=str, default="auto", choices=["file", "random", "fixed", "auto"])
parser.add_argument("--seed", type=int, default=None)
parser.add_argument("--neg-prompt", type=str, default="")
parser.add_argument("--cfg-scale", type=float, default=1.0)
parser.add_argument("--embedded-cfg-scale", type=float, default=6.0)
parser.add_argument("--reproduce", action="store_true")
# Parallel settings
parser.add_argument("--ulysses-degree", type=int, default=1)
parser.add_argument("--ring-degree", type=int, default=1)
# Parse with empty args list to avoid reading sys.argv
args = parser.parse_args([])
return args
class EndpointHandler:
def __init__(self, path: str = ""):
"""Initialize the handler with model path and default config."""
logger.info(f"Initializing EndpointHandler with path: {path}")
# Use default args instead of parsing from command line
self.args = get_default_args()
# Convert path to absolute path if not already
path = str(Path(path).absolute())
logger.info(f"Absolute path: {path}")
# Set up model paths
self.args.model_base = path
# Set paths for model components
dit_weight_path = Path(path) / "hunyuan-video-t2v-720p/transformers/mp_rank_00_model_states.pt"
original_vae_path = Path(path) / "hunyuan-video-t2v-720p/vae"
# to save on memory, we activate fp8 weights and we override the previous dit_weight_path setting
self.args.use_fp8 = True
dit_weight_path = Path(path) / "hunyuan-video-t2v-720p/transformers/mp_rank_00_model_states_fp8.pt"
# Log all critical paths
logger.info(f"Model base path: {self.args.model_base}")
logger.info(f"DiT weight path: {dit_weight_path}")
logger.info(f"Use fp8: {self.args.use_fp8}")
logger.info(f"Original VAE path: {original_vae_path}")
# Verify paths exist
logger.info("Checking if paths exist:")
logger.info(f"DiT weight exists: {dit_weight_path.exists()}")
logger.info(f"VAE path exists: {original_vae_path.exists()}")
if original_vae_path.exists():
logger.info(f"VAE path contents: {list(original_vae_path.glob('*'))}")
# Set up VAE in temporary directory with correct file names
tmp_vae_path = setup_vae_path(original_vae_path)
# Override the VAE path in constants to use our temporary directory
from hyvideo.constants import VAE_PATH, TEXT_ENCODER_PATH, TOKENIZER_PATH
VAE_PATH["884-16c-hy"] = str(tmp_vae_path)
logger.info(f"Updated VAE_PATH to: {VAE_PATH['884-16c-hy']}")
# Update text encoder paths to use absolute paths
text_encoder_path = str(Path(path) / "text_encoder")
text_encoder_2_path = str(Path(path) / "text_encoder_2")
# Update both text encoder and tokenizer paths
TEXT_ENCODER_PATH.update({
"llm": text_encoder_path,
"clipL": text_encoder_2_path
})
TOKENIZER_PATH.update({
"llm": text_encoder_path,
"clipL": text_encoder_2_path
})
logger.info(f"Updated text encoder paths:")
logger.info(f"TEXT_ENCODER_PATH['llm']: {TEXT_ENCODER_PATH['llm']}")
logger.info(f"TEXT_ENCODER_PATH['clipL']: {TEXT_ENCODER_PATH['clipL']}")
logger.info(f"TOKENIZER_PATH['llm']: {TOKENIZER_PATH['llm']}")
logger.info(f"TOKENIZER_PATH['clipL']: {TOKENIZER_PATH['clipL']}")
self.args.dit_weight = str(dit_weight_path)
# Initialize model
models_root_path = Path(path)
if not models_root_path.exists():
raise ValueError(f"models_root_path does not exist: {models_root_path}")
try:
logger.info("Attempting to initialize HunyuanVideoSampler...")
self.model = HunyuanVideoSampler.from_pretrained(models_root_path, args=self.args)
logger.info("Successfully initialized HunyuanVideoSampler")
except Exception as e:
logger.error(f"Error initializing model: {str(e)}")
raise
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
"""Process a single request"""
# Log incoming request
logger.info(f"Processing request with data: {data}")
# Get inputs from request data
prompt = data.pop("inputs", None)
if prompt is None:
raise ValueError("No prompt provided in the 'inputs' field")
# Parse resolution
resolution = data.pop("resolution", f"{DEFAULT_WIDTH}x{DEFAULT_HEIGHT}")
width, height = map(int, resolution.split("x"))
# Get other parameters with defaults
video_length = int(data.pop("video_length", DEFAULT_NB_FRAMES))
seed = data.pop("seed", -1)
seed = None if seed == -1 else int(seed)
num_inference_steps = int(data.pop("num_inference_steps", DEFAULT_NB_STEPS))
guidance_scale = float(data.pop("guidance_scale", 1.0))
flow_shift = float(data.pop("flow_shift", 7.0))
embedded_guidance_scale = float(data.pop("embedded_guidance_scale", 6.0))
logger.info(f"Processing with parameters: width={width}, height={height}, "
f"video_length={video_length}, seed={seed}, "
f"num_inference_steps={num_inference_steps}")
try:
# Run inference
outputs = self.model.predict(
prompt=prompt,
height=height,
width=width,
video_length=video_length,
seed=seed,
negative_prompt="",
infer_steps=num_inference_steps,
guidance_scale=guidance_scale,
num_videos_per_prompt=1,
flow_shift=flow_shift,
batch_size=1,
embedded_guidance_scale=embedded_guidance_scale
)
# Get the video tensor
samples = outputs['samples']
sample = samples[0].unsqueeze(0)
# Save to temporary file
temp_path = "/tmp/temp_video.mp4"
save_videos_grid(sample, temp_path, fps=DEFAULT_FPS)
# Read video file and convert to base64
with open(temp_path, "rb") as f:
video_bytes = f.read()
import base64
video_base64 = base64.b64encode(video_bytes).decode()
# Add MP4 data URI prefix
video_data_uri = f"data:video/mp4;base64,{video_base64}"
# Cleanup
os.remove(temp_path)
logger.info("Successfully generated and encoded video")
return video_data_uri
except Exception as e:
logger.error(f"Error during video generation: {str(e)}")
raise