Commit
•
f08eddf
1
Parent(s):
1b4f758
Upload 30 files
Browse files- hyvideo/__init__.py +0 -0
- hyvideo/config.py +392 -0
- hyvideo/constants.py +90 -0
- hyvideo/diffusion/__init__.py +2 -0
- hyvideo/diffusion/pipelines/__init__.py +1 -0
- hyvideo/diffusion/pipelines/pipeline_hunyuan_video.py +1100 -0
- hyvideo/diffusion/schedulers/__init__.py +1 -0
- hyvideo/diffusion/schedulers/scheduling_flow_match_discrete.py +257 -0
- hyvideo/inference.py +672 -0
- hyvideo/modules/__init__.py +26 -0
- hyvideo/modules/activation_layers.py +23 -0
- hyvideo/modules/attenion.py +212 -0
- hyvideo/modules/embed_layers.py +157 -0
- hyvideo/modules/mlp_layers.py +118 -0
- hyvideo/modules/models.py +760 -0
- hyvideo/modules/modulate_layers.py +76 -0
- hyvideo/modules/norm_layers.py +77 -0
- hyvideo/modules/posemb_layers.py +310 -0
- hyvideo/modules/token_refiner.py +236 -0
- hyvideo/prompt_rewrite.py +51 -0
- hyvideo/text_encoder/__init__.py +357 -0
- hyvideo/utils/__init__.py +0 -0
- hyvideo/utils/data_utils.py +15 -0
- hyvideo/utils/file_utils.py +70 -0
- hyvideo/utils/helpers.py +40 -0
- hyvideo/utils/preprocess_text_encoder_tokenizer_utils.py +46 -0
- hyvideo/vae/__init__.py +62 -0
- hyvideo/vae/autoencoder_kl_causal_3d.py +603 -0
- hyvideo/vae/unet_causal_3d_blocks.py +764 -0
- hyvideo/vae/vae.py +355 -0
hyvideo/__init__.py
ADDED
File without changes
|
hyvideo/config.py
ADDED
@@ -0,0 +1,392 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
from .constants import *
|
3 |
+
import re
|
4 |
+
from .modules.models import HUNYUAN_VIDEO_CONFIG
|
5 |
+
|
6 |
+
|
7 |
+
def parse_args(namespace=None):
|
8 |
+
parser = argparse.ArgumentParser(description="HunyuanVideo inference script")
|
9 |
+
|
10 |
+
parser = add_network_args(parser)
|
11 |
+
parser = add_extra_models_args(parser)
|
12 |
+
parser = add_denoise_schedule_args(parser)
|
13 |
+
parser = add_inference_args(parser)
|
14 |
+
parser = add_parallel_args(parser)
|
15 |
+
|
16 |
+
args = parser.parse_args(namespace=namespace)
|
17 |
+
args = sanity_check_args(args)
|
18 |
+
|
19 |
+
return args
|
20 |
+
|
21 |
+
|
22 |
+
def add_network_args(parser: argparse.ArgumentParser):
|
23 |
+
group = parser.add_argument_group(title="HunyuanVideo network args")
|
24 |
+
|
25 |
+
# Main model
|
26 |
+
group.add_argument(
|
27 |
+
"--model",
|
28 |
+
type=str,
|
29 |
+
choices=list(HUNYUAN_VIDEO_CONFIG.keys()),
|
30 |
+
default="HYVideo-T/2-cfgdistill",
|
31 |
+
)
|
32 |
+
group.add_argument(
|
33 |
+
"--latent-channels",
|
34 |
+
type=str,
|
35 |
+
default=16,
|
36 |
+
help="Number of latent channels of DiT. If None, it will be determined by `vae`. If provided, "
|
37 |
+
"it still needs to match the latent channels of the VAE model.",
|
38 |
+
)
|
39 |
+
group.add_argument(
|
40 |
+
"--precision",
|
41 |
+
type=str,
|
42 |
+
default="bf16",
|
43 |
+
choices=PRECISIONS,
|
44 |
+
help="Precision mode. Options: fp32, fp16, bf16. Applied to the backbone model and optimizer.",
|
45 |
+
)
|
46 |
+
|
47 |
+
# RoPE
|
48 |
+
group.add_argument(
|
49 |
+
"--rope-theta", type=int, default=256, help="Theta used in RoPE."
|
50 |
+
)
|
51 |
+
return parser
|
52 |
+
|
53 |
+
|
54 |
+
def add_extra_models_args(parser: argparse.ArgumentParser):
|
55 |
+
group = parser.add_argument_group(
|
56 |
+
title="Extra models args, including vae, text encoders and tokenizers)"
|
57 |
+
)
|
58 |
+
|
59 |
+
# - VAE
|
60 |
+
group.add_argument(
|
61 |
+
"--vae",
|
62 |
+
type=str,
|
63 |
+
default="884-16c-hy",
|
64 |
+
choices=list(VAE_PATH),
|
65 |
+
help="Name of the VAE model.",
|
66 |
+
)
|
67 |
+
group.add_argument(
|
68 |
+
"--vae-precision",
|
69 |
+
type=str,
|
70 |
+
default="fp16",
|
71 |
+
choices=PRECISIONS,
|
72 |
+
help="Precision mode for the VAE model.",
|
73 |
+
)
|
74 |
+
group.add_argument(
|
75 |
+
"--vae-tiling",
|
76 |
+
action="store_true",
|
77 |
+
help="Enable tiling for the VAE model to save GPU memory.",
|
78 |
+
)
|
79 |
+
group.set_defaults(vae_tiling=True)
|
80 |
+
|
81 |
+
group.add_argument(
|
82 |
+
"--text-encoder",
|
83 |
+
type=str,
|
84 |
+
default="llm",
|
85 |
+
choices=list(TEXT_ENCODER_PATH),
|
86 |
+
help="Name of the text encoder model.",
|
87 |
+
)
|
88 |
+
group.add_argument(
|
89 |
+
"--text-encoder-precision",
|
90 |
+
type=str,
|
91 |
+
default="fp16",
|
92 |
+
choices=PRECISIONS,
|
93 |
+
help="Precision mode for the text encoder model.",
|
94 |
+
)
|
95 |
+
group.add_argument(
|
96 |
+
"--text-states-dim",
|
97 |
+
type=int,
|
98 |
+
default=4096,
|
99 |
+
help="Dimension of the text encoder hidden states.",
|
100 |
+
)
|
101 |
+
group.add_argument(
|
102 |
+
"--text-len", type=int, default=256, help="Maximum length of the text input."
|
103 |
+
)
|
104 |
+
group.add_argument(
|
105 |
+
"--tokenizer",
|
106 |
+
type=str,
|
107 |
+
default="llm",
|
108 |
+
choices=list(TOKENIZER_PATH),
|
109 |
+
help="Name of the tokenizer model.",
|
110 |
+
)
|
111 |
+
group.add_argument(
|
112 |
+
"--prompt-template",
|
113 |
+
type=str,
|
114 |
+
default="dit-llm-encode",
|
115 |
+
choices=PROMPT_TEMPLATE,
|
116 |
+
help="Image prompt template for the decoder-only text encoder model.",
|
117 |
+
)
|
118 |
+
group.add_argument(
|
119 |
+
"--prompt-template-video",
|
120 |
+
type=str,
|
121 |
+
default="dit-llm-encode-video",
|
122 |
+
choices=PROMPT_TEMPLATE,
|
123 |
+
help="Video prompt template for the decoder-only text encoder model.",
|
124 |
+
)
|
125 |
+
group.add_argument(
|
126 |
+
"--hidden-state-skip-layer",
|
127 |
+
type=int,
|
128 |
+
default=2,
|
129 |
+
help="Skip layer for hidden states.",
|
130 |
+
)
|
131 |
+
group.add_argument(
|
132 |
+
"--apply-final-norm",
|
133 |
+
action="store_true",
|
134 |
+
help="Apply final normalization to the used text encoder hidden states.",
|
135 |
+
)
|
136 |
+
|
137 |
+
# - CLIP
|
138 |
+
group.add_argument(
|
139 |
+
"--text-encoder-2",
|
140 |
+
type=str,
|
141 |
+
default="clipL",
|
142 |
+
choices=list(TEXT_ENCODER_PATH),
|
143 |
+
help="Name of the second text encoder model.",
|
144 |
+
)
|
145 |
+
group.add_argument(
|
146 |
+
"--text-encoder-precision-2",
|
147 |
+
type=str,
|
148 |
+
default="fp16",
|
149 |
+
choices=PRECISIONS,
|
150 |
+
help="Precision mode for the second text encoder model.",
|
151 |
+
)
|
152 |
+
group.add_argument(
|
153 |
+
"--text-states-dim-2",
|
154 |
+
type=int,
|
155 |
+
default=768,
|
156 |
+
help="Dimension of the second text encoder hidden states.",
|
157 |
+
)
|
158 |
+
group.add_argument(
|
159 |
+
"--tokenizer-2",
|
160 |
+
type=str,
|
161 |
+
default="clipL",
|
162 |
+
choices=list(TOKENIZER_PATH),
|
163 |
+
help="Name of the second tokenizer model.",
|
164 |
+
)
|
165 |
+
group.add_argument(
|
166 |
+
"--text-len-2",
|
167 |
+
type=int,
|
168 |
+
default=77,
|
169 |
+
help="Maximum length of the second text input.",
|
170 |
+
)
|
171 |
+
|
172 |
+
return parser
|
173 |
+
|
174 |
+
|
175 |
+
def add_denoise_schedule_args(parser: argparse.ArgumentParser):
|
176 |
+
group = parser.add_argument_group(title="Denoise schedule args")
|
177 |
+
|
178 |
+
group.add_argument(
|
179 |
+
"--denoise-type",
|
180 |
+
type=str,
|
181 |
+
default="flow",
|
182 |
+
help="Denoise type for noised inputs.",
|
183 |
+
)
|
184 |
+
|
185 |
+
# Flow Matching
|
186 |
+
group.add_argument(
|
187 |
+
"--flow-shift",
|
188 |
+
type=float,
|
189 |
+
default=7.0,
|
190 |
+
help="Shift factor for flow matching schedulers.",
|
191 |
+
)
|
192 |
+
group.add_argument(
|
193 |
+
"--flow-reverse",
|
194 |
+
action="store_true",
|
195 |
+
help="If reverse, learning/sampling from t=1 -> t=0.",
|
196 |
+
)
|
197 |
+
group.add_argument(
|
198 |
+
"--flow-solver",
|
199 |
+
type=str,
|
200 |
+
default="euler",
|
201 |
+
help="Solver for flow matching.",
|
202 |
+
)
|
203 |
+
group.add_argument(
|
204 |
+
"--use-linear-quadratic-schedule",
|
205 |
+
action="store_true",
|
206 |
+
help="Use linear quadratic schedule for flow matching."
|
207 |
+
"Following MovieGen (https://ai.meta.com/static-resource/movie-gen-research-paper)",
|
208 |
+
)
|
209 |
+
group.add_argument(
|
210 |
+
"--linear-schedule-end",
|
211 |
+
type=int,
|
212 |
+
default=25,
|
213 |
+
help="End step for linear quadratic schedule for flow matching.",
|
214 |
+
)
|
215 |
+
|
216 |
+
return parser
|
217 |
+
|
218 |
+
|
219 |
+
def add_inference_args(parser: argparse.ArgumentParser):
|
220 |
+
group = parser.add_argument_group(title="Inference args")
|
221 |
+
|
222 |
+
# ======================== Model loads ========================
|
223 |
+
group.add_argument(
|
224 |
+
"--model-base",
|
225 |
+
type=str,
|
226 |
+
default=".",
|
227 |
+
help="Root path of all the models, including t2v models and extra models.",
|
228 |
+
)
|
229 |
+
group.add_argument(
|
230 |
+
"--dit-weight",
|
231 |
+
type=str,
|
232 |
+
default="./hunyuan-video-t2v-720p/transformers/mp_rank_00_model_states.pt",
|
233 |
+
help="Path to the HunyuanVideo model. If None, search the model in the args.model_root."
|
234 |
+
"1. If it is a file, load the model directly."
|
235 |
+
"2. If it is a directory, search the model in the directory. Support two types of models: "
|
236 |
+
"1) named `pytorch_model_*.pt`"
|
237 |
+
"2) named `*_model_states.pt`, where * can be `mp_rank_00`.",
|
238 |
+
)
|
239 |
+
group.add_argument(
|
240 |
+
"--model-resolution",
|
241 |
+
type=str,
|
242 |
+
default="540p",
|
243 |
+
choices=["540p", "720p"],
|
244 |
+
help="Root path of all the models, including t2v models and extra models.",
|
245 |
+
)
|
246 |
+
group.add_argument(
|
247 |
+
"--load-key",
|
248 |
+
type=str,
|
249 |
+
default="module",
|
250 |
+
help="Key to load the model states. 'module' for the main model, 'ema' for the EMA model.",
|
251 |
+
)
|
252 |
+
group.add_argument(
|
253 |
+
"--use-cpu-offload",
|
254 |
+
action="store_true",
|
255 |
+
help="Use CPU offload for the model load.",
|
256 |
+
)
|
257 |
+
|
258 |
+
# ======================== Inference general setting ========================
|
259 |
+
group.add_argument(
|
260 |
+
"--batch-size",
|
261 |
+
type=int,
|
262 |
+
default=1,
|
263 |
+
help="Batch size for inference and evaluation.",
|
264 |
+
)
|
265 |
+
group.add_argument(
|
266 |
+
"--infer-steps",
|
267 |
+
type=int,
|
268 |
+
default=50,
|
269 |
+
help="Number of denoising steps for inference.",
|
270 |
+
)
|
271 |
+
group.add_argument(
|
272 |
+
"--disable-autocast",
|
273 |
+
action="store_true",
|
274 |
+
help="Disable autocast for denoising loop and vae decoding in pipeline sampling.",
|
275 |
+
)
|
276 |
+
group.add_argument(
|
277 |
+
"--save-path",
|
278 |
+
type=str,
|
279 |
+
default="./results",
|
280 |
+
help="Path to save the generated samples.",
|
281 |
+
)
|
282 |
+
group.add_argument(
|
283 |
+
"--save-path-suffix",
|
284 |
+
type=str,
|
285 |
+
default="",
|
286 |
+
help="Suffix for the directory of saved samples.",
|
287 |
+
)
|
288 |
+
group.add_argument(
|
289 |
+
"--name-suffix",
|
290 |
+
type=str,
|
291 |
+
default="",
|
292 |
+
help="Suffix for the names of saved samples.",
|
293 |
+
)
|
294 |
+
group.add_argument(
|
295 |
+
"--num-videos",
|
296 |
+
type=int,
|
297 |
+
default=1,
|
298 |
+
help="Number of videos to generate for each prompt.",
|
299 |
+
)
|
300 |
+
# ---sample size---
|
301 |
+
group.add_argument(
|
302 |
+
"--video-size",
|
303 |
+
type=int,
|
304 |
+
nargs="+",
|
305 |
+
default=(720, 1280),
|
306 |
+
help="Video size for training. If a single value is provided, it will be used for both height "
|
307 |
+
"and width. If two values are provided, they will be used for height and width "
|
308 |
+
"respectively.",
|
309 |
+
)
|
310 |
+
group.add_argument(
|
311 |
+
"--video-length",
|
312 |
+
type=int,
|
313 |
+
default=129,
|
314 |
+
help="How many frames to sample from a video. if using 3d vae, the number should be 4n+1",
|
315 |
+
)
|
316 |
+
# --- prompt ---
|
317 |
+
group.add_argument(
|
318 |
+
"--prompt",
|
319 |
+
type=str,
|
320 |
+
default=None,
|
321 |
+
help="Prompt for sampling during evaluation.",
|
322 |
+
)
|
323 |
+
group.add_argument(
|
324 |
+
"--seed-type",
|
325 |
+
type=str,
|
326 |
+
default="auto",
|
327 |
+
choices=["file", "random", "fixed", "auto"],
|
328 |
+
help="Seed type for evaluation. If file, use the seed from the CSV file. If random, generate a "
|
329 |
+
"random seed. If fixed, use the fixed seed given by `--seed`. If auto, `csv` will use the "
|
330 |
+
"seed column if available, otherwise use the fixed `seed` value. `prompt` will use the "
|
331 |
+
"fixed `seed` value.",
|
332 |
+
)
|
333 |
+
group.add_argument("--seed", type=int, default=None, help="Seed for evaluation.")
|
334 |
+
|
335 |
+
# Classifier-Free Guidance
|
336 |
+
group.add_argument(
|
337 |
+
"--neg-prompt", type=str, default=None, help="Negative prompt for sampling."
|
338 |
+
)
|
339 |
+
group.add_argument(
|
340 |
+
"--cfg-scale", type=float, default=1.0, help="Classifier free guidance scale."
|
341 |
+
)
|
342 |
+
group.add_argument(
|
343 |
+
"--embedded-cfg-scale",
|
344 |
+
type=float,
|
345 |
+
default=6.0,
|
346 |
+
help="Embeded classifier free guidance scale.",
|
347 |
+
)
|
348 |
+
|
349 |
+
group.add_argument(
|
350 |
+
"--reproduce",
|
351 |
+
action="store_true",
|
352 |
+
help="Enable reproducibility by setting random seeds and deterministic algorithms.",
|
353 |
+
)
|
354 |
+
|
355 |
+
return parser
|
356 |
+
|
357 |
+
|
358 |
+
def add_parallel_args(parser: argparse.ArgumentParser):
|
359 |
+
group = parser.add_argument_group(title="Parallel args")
|
360 |
+
|
361 |
+
# ======================== Model loads ========================
|
362 |
+
group.add_argument(
|
363 |
+
"--ulysses-degree",
|
364 |
+
type=int,
|
365 |
+
default=1,
|
366 |
+
help="Ulysses degree.",
|
367 |
+
)
|
368 |
+
group.add_argument(
|
369 |
+
"--ring-degree",
|
370 |
+
type=int,
|
371 |
+
default=1,
|
372 |
+
help="Ulysses degree.",
|
373 |
+
)
|
374 |
+
|
375 |
+
return parser
|
376 |
+
|
377 |
+
|
378 |
+
def sanity_check_args(args):
|
379 |
+
# VAE channels
|
380 |
+
vae_pattern = r"\d{2,3}-\d{1,2}c-\w+"
|
381 |
+
if not re.match(vae_pattern, args.vae):
|
382 |
+
raise ValueError(
|
383 |
+
f"Invalid VAE model: {args.vae}. Must be in the format of '{vae_pattern}'."
|
384 |
+
)
|
385 |
+
vae_channels = int(args.vae.split("-")[1][:-1])
|
386 |
+
if args.latent_channels is None:
|
387 |
+
args.latent_channels = vae_channels
|
388 |
+
if vae_channels != args.latent_channels:
|
389 |
+
raise ValueError(
|
390 |
+
f"Latent channels ({args.latent_channels}) must match the VAE channels ({vae_channels})."
|
391 |
+
)
|
392 |
+
return args
|
hyvideo/constants.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
|
4 |
+
__all__ = [
|
5 |
+
"C_SCALE",
|
6 |
+
"PROMPT_TEMPLATE",
|
7 |
+
"MODEL_BASE",
|
8 |
+
"PRECISIONS",
|
9 |
+
"NORMALIZATION_TYPE",
|
10 |
+
"ACTIVATION_TYPE",
|
11 |
+
"VAE_PATH",
|
12 |
+
"TEXT_ENCODER_PATH",
|
13 |
+
"TOKENIZER_PATH",
|
14 |
+
"TEXT_PROJECTION",
|
15 |
+
"DATA_TYPE",
|
16 |
+
"NEGATIVE_PROMPT",
|
17 |
+
]
|
18 |
+
|
19 |
+
PRECISION_TO_TYPE = {
|
20 |
+
'fp32': torch.float32,
|
21 |
+
'fp16': torch.float16,
|
22 |
+
'bf16': torch.bfloat16,
|
23 |
+
}
|
24 |
+
|
25 |
+
# =================== Constant Values =====================
|
26 |
+
# Computation scale factor, 1P = 1_000_000_000_000_000. Tensorboard will display the value in PetaFLOPS to avoid
|
27 |
+
# overflow error when tensorboard logging values.
|
28 |
+
C_SCALE = 1_000_000_000_000_000
|
29 |
+
|
30 |
+
# When using decoder-only models, we must provide a prompt template to instruct the text encoder
|
31 |
+
# on how to generate the text.
|
32 |
+
# --------------------------------------------------------------------
|
33 |
+
PROMPT_TEMPLATE_ENCODE = (
|
34 |
+
"<|start_header_id|>system<|end_header_id|>\n\nDescribe the image by detailing the color, shape, size, texture, "
|
35 |
+
"quantity, text, spatial relationships of the objects and background:<|eot_id|>"
|
36 |
+
"<|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|>"
|
37 |
+
)
|
38 |
+
PROMPT_TEMPLATE_ENCODE_VIDEO = (
|
39 |
+
"<|start_header_id|>system<|end_header_id|>\n\nDescribe the video by detailing the following aspects: "
|
40 |
+
"1. The main content and theme of the video."
|
41 |
+
"2. The color, shape, size, texture, quantity, text, and spatial relationships of the objects."
|
42 |
+
"3. Actions, events, behaviors temporal relationships, physical movement changes of the objects."
|
43 |
+
"4. background environment, light, style and atmosphere."
|
44 |
+
"5. camera angles, movements, and transitions used in the video:<|eot_id|>"
|
45 |
+
"<|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|>"
|
46 |
+
)
|
47 |
+
|
48 |
+
NEGATIVE_PROMPT = "Aerial view, aerial view, overexposed, low quality, deformation, a poor composition, bad hands, bad teeth, bad eyes, bad limbs, distortion"
|
49 |
+
|
50 |
+
PROMPT_TEMPLATE = {
|
51 |
+
"dit-llm-encode": {
|
52 |
+
"template": PROMPT_TEMPLATE_ENCODE,
|
53 |
+
"crop_start": 36,
|
54 |
+
},
|
55 |
+
"dit-llm-encode-video": {
|
56 |
+
"template": PROMPT_TEMPLATE_ENCODE_VIDEO,
|
57 |
+
"crop_start": 95,
|
58 |
+
},
|
59 |
+
}
|
60 |
+
|
61 |
+
# ======================= Model ======================
|
62 |
+
PRECISIONS = {"fp32", "fp16", "bf16"}
|
63 |
+
NORMALIZATION_TYPE = {"layer", "rms"}
|
64 |
+
ACTIVATION_TYPE = {"relu", "silu", "gelu", "gelu_tanh"}
|
65 |
+
|
66 |
+
# =================== Model Path =====================
|
67 |
+
MODEL_BASE = os.getenv("MODEL_BASE", ".")
|
68 |
+
|
69 |
+
# =================== Data =======================
|
70 |
+
DATA_TYPE = {"image", "video", "image_video"}
|
71 |
+
|
72 |
+
# 3D VAE
|
73 |
+
VAE_PATH = {"884-16c-hy": f"{MODEL_BASE}/hunyuan-video-t2v-720p/vae"}
|
74 |
+
|
75 |
+
# Text Encoder
|
76 |
+
TEXT_ENCODER_PATH = {
|
77 |
+
"clipL": f"{MODEL_BASE}/text_encoder_2",
|
78 |
+
"llm": f"{MODEL_BASE}/text_encoder",
|
79 |
+
}
|
80 |
+
|
81 |
+
# Tokenizer
|
82 |
+
TOKENIZER_PATH = {
|
83 |
+
"clipL": f"{MODEL_BASE}/text_encoder_2",
|
84 |
+
"llm": f"{MODEL_BASE}/text_encoder",
|
85 |
+
}
|
86 |
+
|
87 |
+
TEXT_PROJECTION = {
|
88 |
+
"linear", # Default, an nn.Linear() layer
|
89 |
+
"single_refiner", # Single TokenRefiner. Refer to LI-DiT
|
90 |
+
}
|
hyvideo/diffusion/__init__.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
from .pipelines import HunyuanVideoPipeline
|
2 |
+
from .schedulers import FlowMatchDiscreteScheduler
|
hyvideo/diffusion/pipelines/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .pipeline_hunyuan_video import HunyuanVideoPipeline
|
hyvideo/diffusion/pipelines/pipeline_hunyuan_video.py
ADDED
@@ -0,0 +1,1100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# ==============================================================================
|
15 |
+
#
|
16 |
+
# Modified from diffusers==0.29.2
|
17 |
+
#
|
18 |
+
# ==============================================================================
|
19 |
+
import inspect
|
20 |
+
from typing import Any, Callable, Dict, List, Optional, Union, Tuple
|
21 |
+
import torch
|
22 |
+
import torch.distributed as dist
|
23 |
+
import numpy as np
|
24 |
+
from dataclasses import dataclass
|
25 |
+
from packaging import version
|
26 |
+
|
27 |
+
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
|
28 |
+
from diffusers.configuration_utils import FrozenDict
|
29 |
+
from diffusers.image_processor import VaeImageProcessor
|
30 |
+
from diffusers.loaders import LoraLoaderMixin, TextualInversionLoaderMixin
|
31 |
+
from diffusers.models import AutoencoderKL
|
32 |
+
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
33 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
34 |
+
from diffusers.utils import (
|
35 |
+
USE_PEFT_BACKEND,
|
36 |
+
deprecate,
|
37 |
+
logging,
|
38 |
+
replace_example_docstring,
|
39 |
+
scale_lora_layers,
|
40 |
+
unscale_lora_layers,
|
41 |
+
)
|
42 |
+
from diffusers.utils.torch_utils import randn_tensor
|
43 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
44 |
+
from diffusers.utils import BaseOutput
|
45 |
+
|
46 |
+
from ...constants import PRECISION_TO_TYPE
|
47 |
+
from ...vae.autoencoder_kl_causal_3d import AutoencoderKLCausal3D
|
48 |
+
from ...text_encoder import TextEncoder
|
49 |
+
from ...modules import HYVideoDiffusionTransformer
|
50 |
+
|
51 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
52 |
+
|
53 |
+
EXAMPLE_DOC_STRING = """"""
|
54 |
+
|
55 |
+
|
56 |
+
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
57 |
+
"""
|
58 |
+
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
59 |
+
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
|
60 |
+
"""
|
61 |
+
std_text = noise_pred_text.std(
|
62 |
+
dim=list(range(1, noise_pred_text.ndim)), keepdim=True
|
63 |
+
)
|
64 |
+
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
65 |
+
# rescale the results from guidance (fixes overexposure)
|
66 |
+
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
|
67 |
+
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
|
68 |
+
noise_cfg = (
|
69 |
+
guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
|
70 |
+
)
|
71 |
+
return noise_cfg
|
72 |
+
|
73 |
+
|
74 |
+
def retrieve_timesteps(
|
75 |
+
scheduler,
|
76 |
+
num_inference_steps: Optional[int] = None,
|
77 |
+
device: Optional[Union[str, torch.device]] = None,
|
78 |
+
timesteps: Optional[List[int]] = None,
|
79 |
+
sigmas: Optional[List[float]] = None,
|
80 |
+
**kwargs,
|
81 |
+
):
|
82 |
+
"""
|
83 |
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
84 |
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
85 |
+
|
86 |
+
Args:
|
87 |
+
scheduler (`SchedulerMixin`):
|
88 |
+
The scheduler to get timesteps from.
|
89 |
+
num_inference_steps (`int`):
|
90 |
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
91 |
+
must be `None`.
|
92 |
+
device (`str` or `torch.device`, *optional*):
|
93 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
94 |
+
timesteps (`List[int]`, *optional*):
|
95 |
+
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
96 |
+
`num_inference_steps` and `sigmas` must be `None`.
|
97 |
+
sigmas (`List[float]`, *optional*):
|
98 |
+
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
99 |
+
`num_inference_steps` and `timesteps` must be `None`.
|
100 |
+
|
101 |
+
Returns:
|
102 |
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
103 |
+
second element is the number of inference steps.
|
104 |
+
"""
|
105 |
+
if timesteps is not None and sigmas is not None:
|
106 |
+
raise ValueError(
|
107 |
+
"Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values"
|
108 |
+
)
|
109 |
+
if timesteps is not None:
|
110 |
+
accepts_timesteps = "timesteps" in set(
|
111 |
+
inspect.signature(scheduler.set_timesteps).parameters.keys()
|
112 |
+
)
|
113 |
+
if not accepts_timesteps:
|
114 |
+
raise ValueError(
|
115 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
116 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
117 |
+
)
|
118 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
119 |
+
timesteps = scheduler.timesteps
|
120 |
+
num_inference_steps = len(timesteps)
|
121 |
+
elif sigmas is not None:
|
122 |
+
accept_sigmas = "sigmas" in set(
|
123 |
+
inspect.signature(scheduler.set_timesteps).parameters.keys()
|
124 |
+
)
|
125 |
+
if not accept_sigmas:
|
126 |
+
raise ValueError(
|
127 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
128 |
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
129 |
+
)
|
130 |
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
131 |
+
timesteps = scheduler.timesteps
|
132 |
+
num_inference_steps = len(timesteps)
|
133 |
+
else:
|
134 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
135 |
+
timesteps = scheduler.timesteps
|
136 |
+
return timesteps, num_inference_steps
|
137 |
+
|
138 |
+
|
139 |
+
@dataclass
|
140 |
+
class HunyuanVideoPipelineOutput(BaseOutput):
|
141 |
+
videos: Union[torch.Tensor, np.ndarray]
|
142 |
+
|
143 |
+
|
144 |
+
class HunyuanVideoPipeline(DiffusionPipeline):
|
145 |
+
r"""
|
146 |
+
Pipeline for text-to-video generation using HunyuanVideo.
|
147 |
+
|
148 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
|
149 |
+
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
|
150 |
+
|
151 |
+
Args:
|
152 |
+
vae ([`AutoencoderKL`]):
|
153 |
+
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
|
154 |
+
text_encoder ([`TextEncoder`]):
|
155 |
+
Frozen text-encoder.
|
156 |
+
text_encoder_2 ([`TextEncoder`]):
|
157 |
+
Frozen text-encoder_2.
|
158 |
+
transformer ([`HYVideoDiffusionTransformer`]):
|
159 |
+
A `HYVideoDiffusionTransformer` to denoise the encoded video latents.
|
160 |
+
scheduler ([`SchedulerMixin`]):
|
161 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents.
|
162 |
+
"""
|
163 |
+
|
164 |
+
model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae"
|
165 |
+
_optional_components = ["text_encoder_2"]
|
166 |
+
_exclude_from_cpu_offload = ["transformer"]
|
167 |
+
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
|
168 |
+
|
169 |
+
def __init__(
|
170 |
+
self,
|
171 |
+
vae: AutoencoderKL,
|
172 |
+
text_encoder: TextEncoder,
|
173 |
+
transformer: HYVideoDiffusionTransformer,
|
174 |
+
scheduler: KarrasDiffusionSchedulers,
|
175 |
+
text_encoder_2: Optional[TextEncoder] = None,
|
176 |
+
progress_bar_config: Dict[str, Any] = None,
|
177 |
+
args=None,
|
178 |
+
):
|
179 |
+
super().__init__()
|
180 |
+
|
181 |
+
# ==========================================================================================
|
182 |
+
if progress_bar_config is None:
|
183 |
+
progress_bar_config = {}
|
184 |
+
if not hasattr(self, "_progress_bar_config"):
|
185 |
+
self._progress_bar_config = {}
|
186 |
+
self._progress_bar_config.update(progress_bar_config)
|
187 |
+
|
188 |
+
self.args = args
|
189 |
+
# ==========================================================================================
|
190 |
+
|
191 |
+
if (
|
192 |
+
hasattr(scheduler.config, "steps_offset")
|
193 |
+
and scheduler.config.steps_offset != 1
|
194 |
+
):
|
195 |
+
deprecation_message = (
|
196 |
+
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
|
197 |
+
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
|
198 |
+
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
|
199 |
+
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
|
200 |
+
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
|
201 |
+
" file"
|
202 |
+
)
|
203 |
+
deprecate(
|
204 |
+
"steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False
|
205 |
+
)
|
206 |
+
new_config = dict(scheduler.config)
|
207 |
+
new_config["steps_offset"] = 1
|
208 |
+
scheduler._internal_dict = FrozenDict(new_config)
|
209 |
+
|
210 |
+
if (
|
211 |
+
hasattr(scheduler.config, "clip_sample")
|
212 |
+
and scheduler.config.clip_sample is True
|
213 |
+
):
|
214 |
+
deprecation_message = (
|
215 |
+
f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
|
216 |
+
" `clip_sample` should be set to False in the configuration file. Please make sure to update the"
|
217 |
+
" config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
|
218 |
+
" future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
|
219 |
+
" nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
|
220 |
+
)
|
221 |
+
deprecate(
|
222 |
+
"clip_sample not set", "1.0.0", deprecation_message, standard_warn=False
|
223 |
+
)
|
224 |
+
new_config = dict(scheduler.config)
|
225 |
+
new_config["clip_sample"] = False
|
226 |
+
scheduler._internal_dict = FrozenDict(new_config)
|
227 |
+
|
228 |
+
self.register_modules(
|
229 |
+
vae=vae,
|
230 |
+
text_encoder=text_encoder,
|
231 |
+
transformer=transformer,
|
232 |
+
scheduler=scheduler,
|
233 |
+
text_encoder_2=text_encoder_2,
|
234 |
+
)
|
235 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
236 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
237 |
+
|
238 |
+
def encode_prompt(
|
239 |
+
self,
|
240 |
+
prompt,
|
241 |
+
device,
|
242 |
+
num_videos_per_prompt,
|
243 |
+
do_classifier_free_guidance,
|
244 |
+
negative_prompt=None,
|
245 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
246 |
+
attention_mask: Optional[torch.Tensor] = None,
|
247 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
248 |
+
negative_attention_mask: Optional[torch.Tensor] = None,
|
249 |
+
lora_scale: Optional[float] = None,
|
250 |
+
clip_skip: Optional[int] = None,
|
251 |
+
text_encoder: Optional[TextEncoder] = None,
|
252 |
+
data_type: Optional[str] = "image",
|
253 |
+
):
|
254 |
+
r"""
|
255 |
+
Encodes the prompt into text encoder hidden states.
|
256 |
+
|
257 |
+
Args:
|
258 |
+
prompt (`str` or `List[str]`, *optional*):
|
259 |
+
prompt to be encoded
|
260 |
+
device: (`torch.device`):
|
261 |
+
torch device
|
262 |
+
num_videos_per_prompt (`int`):
|
263 |
+
number of videos that should be generated per prompt
|
264 |
+
do_classifier_free_guidance (`bool`):
|
265 |
+
whether to use classifier free guidance or not
|
266 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
267 |
+
The prompt or prompts not to guide the video generation. If not defined, one has to pass
|
268 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
269 |
+
less than `1`).
|
270 |
+
prompt_embeds (`torch.Tensor`, *optional*):
|
271 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
272 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
273 |
+
attention_mask (`torch.Tensor`, *optional*):
|
274 |
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
275 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
276 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
277 |
+
argument.
|
278 |
+
negative_attention_mask (`torch.Tensor`, *optional*):
|
279 |
+
lora_scale (`float`, *optional*):
|
280 |
+
A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
281 |
+
clip_skip (`int`, *optional*):
|
282 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
283 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
284 |
+
text_encoder (TextEncoder, *optional*):
|
285 |
+
data_type (`str`, *optional*):
|
286 |
+
"""
|
287 |
+
if text_encoder is None:
|
288 |
+
text_encoder = self.text_encoder
|
289 |
+
|
290 |
+
# set lora scale so that monkey patched LoRA
|
291 |
+
# function of text encoder can correctly access it
|
292 |
+
if lora_scale is not None and isinstance(self, LoraLoaderMixin):
|
293 |
+
self._lora_scale = lora_scale
|
294 |
+
|
295 |
+
# dynamically adjust the LoRA scale
|
296 |
+
if not USE_PEFT_BACKEND:
|
297 |
+
adjust_lora_scale_text_encoder(text_encoder.model, lora_scale)
|
298 |
+
else:
|
299 |
+
scale_lora_layers(text_encoder.model, lora_scale)
|
300 |
+
|
301 |
+
if prompt is not None and isinstance(prompt, str):
|
302 |
+
batch_size = 1
|
303 |
+
elif prompt is not None and isinstance(prompt, list):
|
304 |
+
batch_size = len(prompt)
|
305 |
+
else:
|
306 |
+
batch_size = prompt_embeds.shape[0]
|
307 |
+
|
308 |
+
if prompt_embeds is None:
|
309 |
+
# textual inversion: process multi-vector tokens if necessary
|
310 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
311 |
+
prompt = self.maybe_convert_prompt(prompt, text_encoder.tokenizer)
|
312 |
+
|
313 |
+
text_inputs = text_encoder.text2tokens(prompt, data_type=data_type)
|
314 |
+
|
315 |
+
if clip_skip is None:
|
316 |
+
prompt_outputs = text_encoder.encode(
|
317 |
+
text_inputs, data_type=data_type, device=device
|
318 |
+
)
|
319 |
+
prompt_embeds = prompt_outputs.hidden_state
|
320 |
+
else:
|
321 |
+
prompt_outputs = text_encoder.encode(
|
322 |
+
text_inputs,
|
323 |
+
output_hidden_states=True,
|
324 |
+
data_type=data_type,
|
325 |
+
device=device,
|
326 |
+
)
|
327 |
+
# Access the `hidden_states` first, that contains a tuple of
|
328 |
+
# all the hidden states from the encoder layers. Then index into
|
329 |
+
# the tuple to access the hidden states from the desired layer.
|
330 |
+
prompt_embeds = prompt_outputs.hidden_states_list[-(clip_skip + 1)]
|
331 |
+
# We also need to apply the final LayerNorm here to not mess with the
|
332 |
+
# representations. The `last_hidden_states` that we typically use for
|
333 |
+
# obtaining the final prompt representations passes through the LayerNorm
|
334 |
+
# layer.
|
335 |
+
prompt_embeds = text_encoder.model.text_model.final_layer_norm(
|
336 |
+
prompt_embeds
|
337 |
+
)
|
338 |
+
|
339 |
+
attention_mask = prompt_outputs.attention_mask
|
340 |
+
if attention_mask is not None:
|
341 |
+
attention_mask = attention_mask.to(device)
|
342 |
+
bs_embed, seq_len = attention_mask.shape
|
343 |
+
attention_mask = attention_mask.repeat(1, num_videos_per_prompt)
|
344 |
+
attention_mask = attention_mask.view(
|
345 |
+
bs_embed * num_videos_per_prompt, seq_len
|
346 |
+
)
|
347 |
+
|
348 |
+
if text_encoder is not None:
|
349 |
+
prompt_embeds_dtype = text_encoder.dtype
|
350 |
+
elif self.transformer is not None:
|
351 |
+
prompt_embeds_dtype = self.transformer.dtype
|
352 |
+
else:
|
353 |
+
prompt_embeds_dtype = prompt_embeds.dtype
|
354 |
+
|
355 |
+
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
356 |
+
|
357 |
+
if prompt_embeds.ndim == 2:
|
358 |
+
bs_embed, _ = prompt_embeds.shape
|
359 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
360 |
+
prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt)
|
361 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_videos_per_prompt, -1)
|
362 |
+
else:
|
363 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
364 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
365 |
+
prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1)
|
366 |
+
prompt_embeds = prompt_embeds.view(
|
367 |
+
bs_embed * num_videos_per_prompt, seq_len, -1
|
368 |
+
)
|
369 |
+
|
370 |
+
# get unconditional embeddings for classifier free guidance
|
371 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
372 |
+
uncond_tokens: List[str]
|
373 |
+
if negative_prompt is None:
|
374 |
+
uncond_tokens = [""] * batch_size
|
375 |
+
elif prompt is not None and type(prompt) is not type(negative_prompt):
|
376 |
+
raise TypeError(
|
377 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
378 |
+
f" {type(prompt)}."
|
379 |
+
)
|
380 |
+
elif isinstance(negative_prompt, str):
|
381 |
+
uncond_tokens = [negative_prompt]
|
382 |
+
elif batch_size != len(negative_prompt):
|
383 |
+
raise ValueError(
|
384 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
385 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
386 |
+
" the batch size of `prompt`."
|
387 |
+
)
|
388 |
+
else:
|
389 |
+
uncond_tokens = negative_prompt
|
390 |
+
|
391 |
+
# textual inversion: process multi-vector tokens if necessary
|
392 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
393 |
+
uncond_tokens = self.maybe_convert_prompt(
|
394 |
+
uncond_tokens, text_encoder.tokenizer
|
395 |
+
)
|
396 |
+
|
397 |
+
# max_length = prompt_embeds.shape[1]
|
398 |
+
uncond_input = text_encoder.text2tokens(uncond_tokens, data_type=data_type)
|
399 |
+
|
400 |
+
negative_prompt_outputs = text_encoder.encode(
|
401 |
+
uncond_input, data_type=data_type, device=device
|
402 |
+
)
|
403 |
+
negative_prompt_embeds = negative_prompt_outputs.hidden_state
|
404 |
+
|
405 |
+
negative_attention_mask = negative_prompt_outputs.attention_mask
|
406 |
+
if negative_attention_mask is not None:
|
407 |
+
negative_attention_mask = negative_attention_mask.to(device)
|
408 |
+
_, seq_len = negative_attention_mask.shape
|
409 |
+
negative_attention_mask = negative_attention_mask.repeat(
|
410 |
+
1, num_videos_per_prompt
|
411 |
+
)
|
412 |
+
negative_attention_mask = negative_attention_mask.view(
|
413 |
+
batch_size * num_videos_per_prompt, seq_len
|
414 |
+
)
|
415 |
+
|
416 |
+
if do_classifier_free_guidance:
|
417 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
418 |
+
seq_len = negative_prompt_embeds.shape[1]
|
419 |
+
|
420 |
+
negative_prompt_embeds = negative_prompt_embeds.to(
|
421 |
+
dtype=prompt_embeds_dtype, device=device
|
422 |
+
)
|
423 |
+
|
424 |
+
if negative_prompt_embeds.ndim == 2:
|
425 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(
|
426 |
+
1, num_videos_per_prompt
|
427 |
+
)
|
428 |
+
negative_prompt_embeds = negative_prompt_embeds.view(
|
429 |
+
batch_size * num_videos_per_prompt, -1
|
430 |
+
)
|
431 |
+
else:
|
432 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(
|
433 |
+
1, num_videos_per_prompt, 1
|
434 |
+
)
|
435 |
+
negative_prompt_embeds = negative_prompt_embeds.view(
|
436 |
+
batch_size * num_videos_per_prompt, seq_len, -1
|
437 |
+
)
|
438 |
+
|
439 |
+
if text_encoder is not None:
|
440 |
+
if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND:
|
441 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
442 |
+
unscale_lora_layers(text_encoder.model, lora_scale)
|
443 |
+
|
444 |
+
return (
|
445 |
+
prompt_embeds,
|
446 |
+
negative_prompt_embeds,
|
447 |
+
attention_mask,
|
448 |
+
negative_attention_mask,
|
449 |
+
)
|
450 |
+
|
451 |
+
def decode_latents(self, latents, enable_tiling=True):
|
452 |
+
deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead"
|
453 |
+
deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False)
|
454 |
+
|
455 |
+
latents = 1 / self.vae.config.scaling_factor * latents
|
456 |
+
if enable_tiling:
|
457 |
+
self.vae.enable_tiling()
|
458 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
459 |
+
else:
|
460 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
461 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
462 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
463 |
+
if image.ndim == 4:
|
464 |
+
image = image.cpu().permute(0, 2, 3, 1).float()
|
465 |
+
else:
|
466 |
+
image = image.cpu().float()
|
467 |
+
return image
|
468 |
+
|
469 |
+
def prepare_extra_func_kwargs(self, func, kwargs):
|
470 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
471 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
472 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
473 |
+
# and should be between [0, 1]
|
474 |
+
extra_step_kwargs = {}
|
475 |
+
|
476 |
+
for k, v in kwargs.items():
|
477 |
+
accepts = k in set(inspect.signature(func).parameters.keys())
|
478 |
+
if accepts:
|
479 |
+
extra_step_kwargs[k] = v
|
480 |
+
return extra_step_kwargs
|
481 |
+
|
482 |
+
def check_inputs(
|
483 |
+
self,
|
484 |
+
prompt,
|
485 |
+
height,
|
486 |
+
width,
|
487 |
+
video_length,
|
488 |
+
callback_steps,
|
489 |
+
negative_prompt=None,
|
490 |
+
prompt_embeds=None,
|
491 |
+
negative_prompt_embeds=None,
|
492 |
+
callback_on_step_end_tensor_inputs=None,
|
493 |
+
vae_ver="88-4c-sd",
|
494 |
+
):
|
495 |
+
if height % 8 != 0 or width % 8 != 0:
|
496 |
+
raise ValueError(
|
497 |
+
f"`height` and `width` have to be divisible by 8 but are {height} and {width}."
|
498 |
+
)
|
499 |
+
|
500 |
+
if video_length is not None:
|
501 |
+
if "884" in vae_ver:
|
502 |
+
if video_length != 1 and (video_length - 1) % 4 != 0:
|
503 |
+
raise ValueError(
|
504 |
+
f"`video_length` has to be 1 or a multiple of 4 but is {video_length}."
|
505 |
+
)
|
506 |
+
elif "888" in vae_ver:
|
507 |
+
if video_length != 1 and (video_length - 1) % 8 != 0:
|
508 |
+
raise ValueError(
|
509 |
+
f"`video_length` has to be 1 or a multiple of 8 but is {video_length}."
|
510 |
+
)
|
511 |
+
|
512 |
+
if callback_steps is not None and (
|
513 |
+
not isinstance(callback_steps, int) or callback_steps <= 0
|
514 |
+
):
|
515 |
+
raise ValueError(
|
516 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
517 |
+
f" {type(callback_steps)}."
|
518 |
+
)
|
519 |
+
if callback_on_step_end_tensor_inputs is not None and not all(
|
520 |
+
k in self._callback_tensor_inputs
|
521 |
+
for k in callback_on_step_end_tensor_inputs
|
522 |
+
):
|
523 |
+
raise ValueError(
|
524 |
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
525 |
+
)
|
526 |
+
|
527 |
+
if prompt is not None and prompt_embeds is not None:
|
528 |
+
raise ValueError(
|
529 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
530 |
+
" only forward one of the two."
|
531 |
+
)
|
532 |
+
elif prompt is None and prompt_embeds is None:
|
533 |
+
raise ValueError(
|
534 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
535 |
+
)
|
536 |
+
elif prompt is not None and (
|
537 |
+
not isinstance(prompt, str) and not isinstance(prompt, list)
|
538 |
+
):
|
539 |
+
raise ValueError(
|
540 |
+
f"`prompt` has to be of type `str` or `list` but is {type(prompt)}"
|
541 |
+
)
|
542 |
+
|
543 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
544 |
+
raise ValueError(
|
545 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
546 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
547 |
+
)
|
548 |
+
|
549 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
550 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
551 |
+
raise ValueError(
|
552 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
553 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
554 |
+
f" {negative_prompt_embeds.shape}."
|
555 |
+
)
|
556 |
+
|
557 |
+
|
558 |
+
def prepare_latents(
|
559 |
+
self,
|
560 |
+
batch_size,
|
561 |
+
num_channels_latents,
|
562 |
+
height,
|
563 |
+
width,
|
564 |
+
video_length,
|
565 |
+
dtype,
|
566 |
+
device,
|
567 |
+
generator,
|
568 |
+
latents=None,
|
569 |
+
):
|
570 |
+
shape = (
|
571 |
+
batch_size,
|
572 |
+
num_channels_latents,
|
573 |
+
video_length,
|
574 |
+
int(height) // self.vae_scale_factor,
|
575 |
+
int(width) // self.vae_scale_factor,
|
576 |
+
)
|
577 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
578 |
+
raise ValueError(
|
579 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
580 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
581 |
+
)
|
582 |
+
|
583 |
+
if latents is None:
|
584 |
+
latents = randn_tensor(
|
585 |
+
shape, generator=generator, device=device, dtype=dtype
|
586 |
+
)
|
587 |
+
else:
|
588 |
+
latents = latents.to(device)
|
589 |
+
|
590 |
+
# Check existence to make it compatible with FlowMatchEulerDiscreteScheduler
|
591 |
+
if hasattr(self.scheduler, "init_noise_sigma"):
|
592 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
593 |
+
latents = latents * self.scheduler.init_noise_sigma
|
594 |
+
return latents
|
595 |
+
|
596 |
+
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
|
597 |
+
def get_guidance_scale_embedding(
|
598 |
+
self,
|
599 |
+
w: torch.Tensor,
|
600 |
+
embedding_dim: int = 512,
|
601 |
+
dtype: torch.dtype = torch.float32,
|
602 |
+
) -> torch.Tensor:
|
603 |
+
"""
|
604 |
+
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
|
605 |
+
|
606 |
+
Args:
|
607 |
+
w (`torch.Tensor`):
|
608 |
+
Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings.
|
609 |
+
embedding_dim (`int`, *optional*, defaults to 512):
|
610 |
+
Dimension of the embeddings to generate.
|
611 |
+
dtype (`torch.dtype`, *optional*, defaults to `torch.float32`):
|
612 |
+
Data type of the generated embeddings.
|
613 |
+
|
614 |
+
Returns:
|
615 |
+
`torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`.
|
616 |
+
"""
|
617 |
+
assert len(w.shape) == 1
|
618 |
+
w = w * 1000.0
|
619 |
+
|
620 |
+
half_dim = embedding_dim // 2
|
621 |
+
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
|
622 |
+
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
|
623 |
+
emb = w.to(dtype)[:, None] * emb[None, :]
|
624 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
625 |
+
if embedding_dim % 2 == 1: # zero pad
|
626 |
+
emb = torch.nn.functional.pad(emb, (0, 1))
|
627 |
+
assert emb.shape == (w.shape[0], embedding_dim)
|
628 |
+
return emb
|
629 |
+
|
630 |
+
@property
|
631 |
+
def guidance_scale(self):
|
632 |
+
return self._guidance_scale
|
633 |
+
|
634 |
+
@property
|
635 |
+
def guidance_rescale(self):
|
636 |
+
return self._guidance_rescale
|
637 |
+
|
638 |
+
@property
|
639 |
+
def clip_skip(self):
|
640 |
+
return self._clip_skip
|
641 |
+
|
642 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
643 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
644 |
+
# corresponds to doing no classifier free guidance.
|
645 |
+
@property
|
646 |
+
def do_classifier_free_guidance(self):
|
647 |
+
# return self._guidance_scale > 1 and self.transformer.config.time_cond_proj_dim is None
|
648 |
+
return self._guidance_scale > 1
|
649 |
+
|
650 |
+
@property
|
651 |
+
def cross_attention_kwargs(self):
|
652 |
+
return self._cross_attention_kwargs
|
653 |
+
|
654 |
+
@property
|
655 |
+
def num_timesteps(self):
|
656 |
+
return self._num_timesteps
|
657 |
+
|
658 |
+
@property
|
659 |
+
def interrupt(self):
|
660 |
+
return self._interrupt
|
661 |
+
|
662 |
+
@torch.no_grad()
|
663 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
664 |
+
def __call__(
|
665 |
+
self,
|
666 |
+
prompt: Union[str, List[str]],
|
667 |
+
height: int,
|
668 |
+
width: int,
|
669 |
+
video_length: int,
|
670 |
+
data_type: str = "video",
|
671 |
+
num_inference_steps: int = 50,
|
672 |
+
timesteps: List[int] = None,
|
673 |
+
sigmas: List[float] = None,
|
674 |
+
guidance_scale: float = 7.5,
|
675 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
676 |
+
num_videos_per_prompt: Optional[int] = 1,
|
677 |
+
eta: float = 0.0,
|
678 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
679 |
+
latents: Optional[torch.Tensor] = None,
|
680 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
681 |
+
attention_mask: Optional[torch.Tensor] = None,
|
682 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
683 |
+
negative_attention_mask: Optional[torch.Tensor] = None,
|
684 |
+
output_type: Optional[str] = "pil",
|
685 |
+
return_dict: bool = True,
|
686 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
687 |
+
guidance_rescale: float = 0.0,
|
688 |
+
clip_skip: Optional[int] = None,
|
689 |
+
callback_on_step_end: Optional[
|
690 |
+
Union[
|
691 |
+
Callable[[int, int, Dict], None],
|
692 |
+
PipelineCallback,
|
693 |
+
MultiPipelineCallbacks,
|
694 |
+
]
|
695 |
+
] = None,
|
696 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
697 |
+
freqs_cis: Tuple[torch.Tensor, torch.Tensor] = None,
|
698 |
+
vae_ver: str = "88-4c-sd",
|
699 |
+
enable_tiling: bool = False,
|
700 |
+
n_tokens: Optional[int] = None,
|
701 |
+
embedded_guidance_scale: Optional[float] = None,
|
702 |
+
**kwargs,
|
703 |
+
):
|
704 |
+
r"""
|
705 |
+
The call function to the pipeline for generation.
|
706 |
+
|
707 |
+
Args:
|
708 |
+
prompt (`str` or `List[str]`):
|
709 |
+
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
|
710 |
+
height (`int`):
|
711 |
+
The height in pixels of the generated image.
|
712 |
+
width (`int`):
|
713 |
+
The width in pixels of the generated image.
|
714 |
+
video_length (`int`):
|
715 |
+
The number of frames in the generated video.
|
716 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
717 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
718 |
+
expense of slower inference.
|
719 |
+
timesteps (`List[int]`, *optional*):
|
720 |
+
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
721 |
+
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
722 |
+
passed will be used. Must be in descending order.
|
723 |
+
sigmas (`List[float]`, *optional*):
|
724 |
+
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
|
725 |
+
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
|
726 |
+
will be used.
|
727 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
728 |
+
A higher guidance scale value encourages the model to generate images closely linked to the text
|
729 |
+
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
|
730 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
731 |
+
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
|
732 |
+
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
|
733 |
+
num_videos_per_prompt (`int`, *optional*, defaults to 1):
|
734 |
+
The number of images to generate per prompt.
|
735 |
+
eta (`float`, *optional*, defaults to 0.0):
|
736 |
+
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
|
737 |
+
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
738 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
739 |
+
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
740 |
+
generation deterministic.
|
741 |
+
latents (`torch.Tensor`, *optional*):
|
742 |
+
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
743 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
744 |
+
tensor is generated by sampling using the supplied random `generator`.
|
745 |
+
prompt_embeds (`torch.Tensor`, *optional*):
|
746 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
747 |
+
provided, text embeddings are generated from the `prompt` input argument.
|
748 |
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
749 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
750 |
+
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
751 |
+
|
752 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
753 |
+
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
754 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
755 |
+
Whether or not to return a [`HunyuanVideoPipelineOutput`] instead of a
|
756 |
+
plain tuple.
|
757 |
+
cross_attention_kwargs (`dict`, *optional*):
|
758 |
+
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
|
759 |
+
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
760 |
+
guidance_rescale (`float`, *optional*, defaults to 0.0):
|
761 |
+
Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are
|
762 |
+
Flawed](https://arxiv.org/pdf/2305.08891.pdf). Guidance rescale factor should fix overexposure when
|
763 |
+
using zero terminal SNR.
|
764 |
+
clip_skip (`int`, *optional*):
|
765 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
766 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
767 |
+
callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
|
768 |
+
A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
|
769 |
+
each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
|
770 |
+
DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
|
771 |
+
list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
|
772 |
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
773 |
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
774 |
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
775 |
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
776 |
+
|
777 |
+
Examples:
|
778 |
+
|
779 |
+
Returns:
|
780 |
+
[`~HunyuanVideoPipelineOutput`] or `tuple`:
|
781 |
+
If `return_dict` is `True`, [`HunyuanVideoPipelineOutput`] is returned,
|
782 |
+
otherwise a `tuple` is returned where the first element is a list with the generated images and the
|
783 |
+
second element is a list of `bool`s indicating whether the corresponding generated image contains
|
784 |
+
"not-safe-for-work" (nsfw) content.
|
785 |
+
"""
|
786 |
+
callback = kwargs.pop("callback", None)
|
787 |
+
callback_steps = kwargs.pop("callback_steps", None)
|
788 |
+
|
789 |
+
if callback is not None:
|
790 |
+
deprecate(
|
791 |
+
"callback",
|
792 |
+
"1.0.0",
|
793 |
+
"Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
794 |
+
)
|
795 |
+
if callback_steps is not None:
|
796 |
+
deprecate(
|
797 |
+
"callback_steps",
|
798 |
+
"1.0.0",
|
799 |
+
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
800 |
+
)
|
801 |
+
|
802 |
+
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
|
803 |
+
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
|
804 |
+
|
805 |
+
# 0. Default height and width to unet
|
806 |
+
# height = height or self.transformer.config.sample_size * self.vae_scale_factor
|
807 |
+
# width = width or self.transformer.config.sample_size * self.vae_scale_factor
|
808 |
+
# to deal with lora scaling and other possible forward hooks
|
809 |
+
|
810 |
+
# 1. Check inputs. Raise error if not correct
|
811 |
+
self.check_inputs(
|
812 |
+
prompt,
|
813 |
+
height,
|
814 |
+
width,
|
815 |
+
video_length,
|
816 |
+
callback_steps,
|
817 |
+
negative_prompt,
|
818 |
+
prompt_embeds,
|
819 |
+
negative_prompt_embeds,
|
820 |
+
callback_on_step_end_tensor_inputs,
|
821 |
+
vae_ver=vae_ver,
|
822 |
+
)
|
823 |
+
|
824 |
+
self._guidance_scale = guidance_scale
|
825 |
+
self._guidance_rescale = guidance_rescale
|
826 |
+
self._clip_skip = clip_skip
|
827 |
+
self._cross_attention_kwargs = cross_attention_kwargs
|
828 |
+
self._interrupt = False
|
829 |
+
|
830 |
+
# 2. Define call parameters
|
831 |
+
if prompt is not None and isinstance(prompt, str):
|
832 |
+
batch_size = 1
|
833 |
+
elif prompt is not None and isinstance(prompt, list):
|
834 |
+
batch_size = len(prompt)
|
835 |
+
else:
|
836 |
+
batch_size = prompt_embeds.shape[0]
|
837 |
+
|
838 |
+
device = torch.device(f"cuda:{dist.get_rank()}") if dist.is_initialized() else self._execution_device
|
839 |
+
|
840 |
+
# 3. Encode input prompt
|
841 |
+
lora_scale = (
|
842 |
+
self.cross_attention_kwargs.get("scale", None)
|
843 |
+
if self.cross_attention_kwargs is not None
|
844 |
+
else None
|
845 |
+
)
|
846 |
+
|
847 |
+
(
|
848 |
+
prompt_embeds,
|
849 |
+
negative_prompt_embeds,
|
850 |
+
prompt_mask,
|
851 |
+
negative_prompt_mask,
|
852 |
+
) = self.encode_prompt(
|
853 |
+
prompt,
|
854 |
+
device,
|
855 |
+
num_videos_per_prompt,
|
856 |
+
self.do_classifier_free_guidance,
|
857 |
+
negative_prompt,
|
858 |
+
prompt_embeds=prompt_embeds,
|
859 |
+
attention_mask=attention_mask,
|
860 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
861 |
+
negative_attention_mask=negative_attention_mask,
|
862 |
+
lora_scale=lora_scale,
|
863 |
+
clip_skip=self.clip_skip,
|
864 |
+
data_type=data_type,
|
865 |
+
)
|
866 |
+
if self.text_encoder_2 is not None:
|
867 |
+
(
|
868 |
+
prompt_embeds_2,
|
869 |
+
negative_prompt_embeds_2,
|
870 |
+
prompt_mask_2,
|
871 |
+
negative_prompt_mask_2,
|
872 |
+
) = self.encode_prompt(
|
873 |
+
prompt,
|
874 |
+
device,
|
875 |
+
num_videos_per_prompt,
|
876 |
+
self.do_classifier_free_guidance,
|
877 |
+
negative_prompt,
|
878 |
+
prompt_embeds=None,
|
879 |
+
attention_mask=None,
|
880 |
+
negative_prompt_embeds=None,
|
881 |
+
negative_attention_mask=None,
|
882 |
+
lora_scale=lora_scale,
|
883 |
+
clip_skip=self.clip_skip,
|
884 |
+
text_encoder=self.text_encoder_2,
|
885 |
+
data_type=data_type,
|
886 |
+
)
|
887 |
+
else:
|
888 |
+
prompt_embeds_2 = None
|
889 |
+
negative_prompt_embeds_2 = None
|
890 |
+
prompt_mask_2 = None
|
891 |
+
negative_prompt_mask_2 = None
|
892 |
+
|
893 |
+
# For classifier free guidance, we need to do two forward passes.
|
894 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
895 |
+
# to avoid doing two forward passes
|
896 |
+
if self.do_classifier_free_guidance:
|
897 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
898 |
+
if prompt_mask is not None:
|
899 |
+
prompt_mask = torch.cat([negative_prompt_mask, prompt_mask])
|
900 |
+
if prompt_embeds_2 is not None:
|
901 |
+
prompt_embeds_2 = torch.cat([negative_prompt_embeds_2, prompt_embeds_2])
|
902 |
+
if prompt_mask_2 is not None:
|
903 |
+
prompt_mask_2 = torch.cat([negative_prompt_mask_2, prompt_mask_2])
|
904 |
+
|
905 |
+
|
906 |
+
# 4. Prepare timesteps
|
907 |
+
extra_set_timesteps_kwargs = self.prepare_extra_func_kwargs(
|
908 |
+
self.scheduler.set_timesteps, {"n_tokens": n_tokens}
|
909 |
+
)
|
910 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
911 |
+
self.scheduler,
|
912 |
+
num_inference_steps,
|
913 |
+
device,
|
914 |
+
timesteps,
|
915 |
+
sigmas,
|
916 |
+
**extra_set_timesteps_kwargs,
|
917 |
+
)
|
918 |
+
|
919 |
+
if "884" in vae_ver:
|
920 |
+
video_length = (video_length - 1) // 4 + 1
|
921 |
+
elif "888" in vae_ver:
|
922 |
+
video_length = (video_length - 1) // 8 + 1
|
923 |
+
else:
|
924 |
+
video_length = video_length
|
925 |
+
|
926 |
+
# 5. Prepare latent variables
|
927 |
+
num_channels_latents = self.transformer.config.in_channels
|
928 |
+
latents = self.prepare_latents(
|
929 |
+
batch_size * num_videos_per_prompt,
|
930 |
+
num_channels_latents,
|
931 |
+
height,
|
932 |
+
width,
|
933 |
+
video_length,
|
934 |
+
prompt_embeds.dtype,
|
935 |
+
device,
|
936 |
+
generator,
|
937 |
+
latents,
|
938 |
+
)
|
939 |
+
|
940 |
+
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
941 |
+
extra_step_kwargs = self.prepare_extra_func_kwargs(
|
942 |
+
self.scheduler.step,
|
943 |
+
{"generator": generator, "eta": eta},
|
944 |
+
)
|
945 |
+
|
946 |
+
target_dtype = PRECISION_TO_TYPE[self.args.precision]
|
947 |
+
autocast_enabled = (
|
948 |
+
target_dtype != torch.float32
|
949 |
+
) and not self.args.disable_autocast
|
950 |
+
vae_dtype = PRECISION_TO_TYPE[self.args.vae_precision]
|
951 |
+
vae_autocast_enabled = (
|
952 |
+
vae_dtype != torch.float32
|
953 |
+
) and not self.args.disable_autocast
|
954 |
+
|
955 |
+
# 7. Denoising loop
|
956 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
957 |
+
self._num_timesteps = len(timesteps)
|
958 |
+
|
959 |
+
# if is_progress_bar:
|
960 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
961 |
+
for i, t in enumerate(timesteps):
|
962 |
+
if self.interrupt:
|
963 |
+
continue
|
964 |
+
|
965 |
+
# expand the latents if we are doing classifier free guidance
|
966 |
+
latent_model_input = (
|
967 |
+
torch.cat([latents] * 2)
|
968 |
+
if self.do_classifier_free_guidance
|
969 |
+
else latents
|
970 |
+
)
|
971 |
+
latent_model_input = self.scheduler.scale_model_input(
|
972 |
+
latent_model_input, t
|
973 |
+
)
|
974 |
+
|
975 |
+
t_expand = t.repeat(latent_model_input.shape[0])
|
976 |
+
guidance_expand = (
|
977 |
+
torch.tensor(
|
978 |
+
[embedded_guidance_scale] * latent_model_input.shape[0],
|
979 |
+
dtype=torch.float32,
|
980 |
+
device=device,
|
981 |
+
).to(target_dtype)
|
982 |
+
* 1000.0
|
983 |
+
if embedded_guidance_scale is not None
|
984 |
+
else None
|
985 |
+
)
|
986 |
+
|
987 |
+
# predict the noise residual
|
988 |
+
with torch.autocast(
|
989 |
+
device_type="cuda", dtype=target_dtype, enabled=autocast_enabled
|
990 |
+
):
|
991 |
+
noise_pred = self.transformer( # For an input image (129, 192, 336) (1, 256, 256)
|
992 |
+
latent_model_input, # [2, 16, 33, 24, 42]
|
993 |
+
t_expand, # [2]
|
994 |
+
text_states=prompt_embeds, # [2, 256, 4096]
|
995 |
+
text_mask=prompt_mask, # [2, 256]
|
996 |
+
text_states_2=prompt_embeds_2, # [2, 768]
|
997 |
+
freqs_cos=freqs_cis[0], # [seqlen, head_dim]
|
998 |
+
freqs_sin=freqs_cis[1], # [seqlen, head_dim]
|
999 |
+
guidance=guidance_expand,
|
1000 |
+
return_dict=True,
|
1001 |
+
)[
|
1002 |
+
"x"
|
1003 |
+
]
|
1004 |
+
|
1005 |
+
# perform guidance
|
1006 |
+
if self.do_classifier_free_guidance:
|
1007 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
1008 |
+
noise_pred = noise_pred_uncond + self.guidance_scale * (
|
1009 |
+
noise_pred_text - noise_pred_uncond
|
1010 |
+
)
|
1011 |
+
|
1012 |
+
if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
|
1013 |
+
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
1014 |
+
noise_pred = rescale_noise_cfg(
|
1015 |
+
noise_pred,
|
1016 |
+
noise_pred_text,
|
1017 |
+
guidance_rescale=self.guidance_rescale,
|
1018 |
+
)
|
1019 |
+
|
1020 |
+
# compute the previous noisy sample x_t -> x_t-1
|
1021 |
+
latents = self.scheduler.step(
|
1022 |
+
noise_pred, t, latents, **extra_step_kwargs, return_dict=False
|
1023 |
+
)[0]
|
1024 |
+
|
1025 |
+
if callback_on_step_end is not None:
|
1026 |
+
callback_kwargs = {}
|
1027 |
+
for k in callback_on_step_end_tensor_inputs:
|
1028 |
+
callback_kwargs[k] = locals()[k]
|
1029 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
1030 |
+
|
1031 |
+
latents = callback_outputs.pop("latents", latents)
|
1032 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
1033 |
+
negative_prompt_embeds = callback_outputs.pop(
|
1034 |
+
"negative_prompt_embeds", negative_prompt_embeds
|
1035 |
+
)
|
1036 |
+
|
1037 |
+
# call the callback, if provided
|
1038 |
+
if i == len(timesteps) - 1 or (
|
1039 |
+
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
|
1040 |
+
):
|
1041 |
+
if progress_bar is not None:
|
1042 |
+
progress_bar.update()
|
1043 |
+
if callback is not None and i % callback_steps == 0:
|
1044 |
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
1045 |
+
callback(step_idx, t, latents)
|
1046 |
+
|
1047 |
+
if not output_type == "latent":
|
1048 |
+
expand_temporal_dim = False
|
1049 |
+
if len(latents.shape) == 4:
|
1050 |
+
if isinstance(self.vae, AutoencoderKLCausal3D):
|
1051 |
+
latents = latents.unsqueeze(2)
|
1052 |
+
expand_temporal_dim = True
|
1053 |
+
elif len(latents.shape) == 5:
|
1054 |
+
pass
|
1055 |
+
else:
|
1056 |
+
raise ValueError(
|
1057 |
+
f"Only support latents with shape (b, c, h, w) or (b, c, f, h, w), but got {latents.shape}."
|
1058 |
+
)
|
1059 |
+
|
1060 |
+
if (
|
1061 |
+
hasattr(self.vae.config, "shift_factor")
|
1062 |
+
and self.vae.config.shift_factor
|
1063 |
+
):
|
1064 |
+
latents = (
|
1065 |
+
latents / self.vae.config.scaling_factor
|
1066 |
+
+ self.vae.config.shift_factor
|
1067 |
+
)
|
1068 |
+
else:
|
1069 |
+
latents = latents / self.vae.config.scaling_factor
|
1070 |
+
|
1071 |
+
with torch.autocast(
|
1072 |
+
device_type="cuda", dtype=vae_dtype, enabled=vae_autocast_enabled
|
1073 |
+
):
|
1074 |
+
if enable_tiling:
|
1075 |
+
self.vae.enable_tiling()
|
1076 |
+
image = self.vae.decode(
|
1077 |
+
latents, return_dict=False, generator=generator
|
1078 |
+
)[0]
|
1079 |
+
else:
|
1080 |
+
image = self.vae.decode(
|
1081 |
+
latents, return_dict=False, generator=generator
|
1082 |
+
)[0]
|
1083 |
+
|
1084 |
+
if expand_temporal_dim or image.shape[2] == 1:
|
1085 |
+
image = image.squeeze(2)
|
1086 |
+
|
1087 |
+
else:
|
1088 |
+
image = latents
|
1089 |
+
|
1090 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
1091 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
|
1092 |
+
image = image.cpu().float()
|
1093 |
+
|
1094 |
+
# Offload all models
|
1095 |
+
self.maybe_free_model_hooks()
|
1096 |
+
|
1097 |
+
if not return_dict:
|
1098 |
+
return image
|
1099 |
+
|
1100 |
+
return HunyuanVideoPipelineOutput(videos=image)
|
hyvideo/diffusion/schedulers/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .scheduling_flow_match_discrete import FlowMatchDiscreteScheduler
|
hyvideo/diffusion/schedulers/scheduling_flow_match_discrete.py
ADDED
@@ -0,0 +1,257 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 Stability AI, Katherine Crowson and The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# ==============================================================================
|
15 |
+
#
|
16 |
+
# Modified from diffusers==0.29.2
|
17 |
+
#
|
18 |
+
# ==============================================================================
|
19 |
+
|
20 |
+
from dataclasses import dataclass
|
21 |
+
from typing import Optional, Tuple, Union
|
22 |
+
|
23 |
+
import numpy as np
|
24 |
+
import torch
|
25 |
+
|
26 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
27 |
+
from diffusers.utils import BaseOutput, logging
|
28 |
+
from diffusers.schedulers.scheduling_utils import SchedulerMixin
|
29 |
+
|
30 |
+
|
31 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
32 |
+
|
33 |
+
|
34 |
+
@dataclass
|
35 |
+
class FlowMatchDiscreteSchedulerOutput(BaseOutput):
|
36 |
+
"""
|
37 |
+
Output class for the scheduler's `step` function output.
|
38 |
+
|
39 |
+
Args:
|
40 |
+
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
|
41 |
+
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
|
42 |
+
denoising loop.
|
43 |
+
"""
|
44 |
+
|
45 |
+
prev_sample: torch.FloatTensor
|
46 |
+
|
47 |
+
|
48 |
+
class FlowMatchDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
49 |
+
"""
|
50 |
+
Euler scheduler.
|
51 |
+
|
52 |
+
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
|
53 |
+
methods the library implements for all schedulers such as loading and saving.
|
54 |
+
|
55 |
+
Args:
|
56 |
+
num_train_timesteps (`int`, defaults to 1000):
|
57 |
+
The number of diffusion steps to train the model.
|
58 |
+
timestep_spacing (`str`, defaults to `"linspace"`):
|
59 |
+
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
|
60 |
+
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
|
61 |
+
shift (`float`, defaults to 1.0):
|
62 |
+
The shift value for the timestep schedule.
|
63 |
+
reverse (`bool`, defaults to `True`):
|
64 |
+
Whether to reverse the timestep schedule.
|
65 |
+
"""
|
66 |
+
|
67 |
+
_compatibles = []
|
68 |
+
order = 1
|
69 |
+
|
70 |
+
@register_to_config
|
71 |
+
def __init__(
|
72 |
+
self,
|
73 |
+
num_train_timesteps: int = 1000,
|
74 |
+
shift: float = 1.0,
|
75 |
+
reverse: bool = True,
|
76 |
+
solver: str = "euler",
|
77 |
+
n_tokens: Optional[int] = None,
|
78 |
+
):
|
79 |
+
sigmas = torch.linspace(1, 0, num_train_timesteps + 1)
|
80 |
+
|
81 |
+
if not reverse:
|
82 |
+
sigmas = sigmas.flip(0)
|
83 |
+
|
84 |
+
self.sigmas = sigmas
|
85 |
+
# the value fed to model
|
86 |
+
self.timesteps = (sigmas[:-1] * num_train_timesteps).to(dtype=torch.float32)
|
87 |
+
|
88 |
+
self._step_index = None
|
89 |
+
self._begin_index = None
|
90 |
+
|
91 |
+
self.supported_solver = ["euler"]
|
92 |
+
if solver not in self.supported_solver:
|
93 |
+
raise ValueError(
|
94 |
+
f"Solver {solver} not supported. Supported solvers: {self.supported_solver}"
|
95 |
+
)
|
96 |
+
|
97 |
+
@property
|
98 |
+
def step_index(self):
|
99 |
+
"""
|
100 |
+
The index counter for current timestep. It will increase 1 after each scheduler step.
|
101 |
+
"""
|
102 |
+
return self._step_index
|
103 |
+
|
104 |
+
@property
|
105 |
+
def begin_index(self):
|
106 |
+
"""
|
107 |
+
The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
|
108 |
+
"""
|
109 |
+
return self._begin_index
|
110 |
+
|
111 |
+
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
|
112 |
+
def set_begin_index(self, begin_index: int = 0):
|
113 |
+
"""
|
114 |
+
Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
|
115 |
+
|
116 |
+
Args:
|
117 |
+
begin_index (`int`):
|
118 |
+
The begin index for the scheduler.
|
119 |
+
"""
|
120 |
+
self._begin_index = begin_index
|
121 |
+
|
122 |
+
def _sigma_to_t(self, sigma):
|
123 |
+
return sigma * self.config.num_train_timesteps
|
124 |
+
|
125 |
+
def set_timesteps(
|
126 |
+
self,
|
127 |
+
num_inference_steps: int,
|
128 |
+
device: Union[str, torch.device] = None,
|
129 |
+
n_tokens: int = None,
|
130 |
+
):
|
131 |
+
"""
|
132 |
+
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
|
133 |
+
|
134 |
+
Args:
|
135 |
+
num_inference_steps (`int`):
|
136 |
+
The number of diffusion steps used when generating samples with a pre-trained model.
|
137 |
+
device (`str` or `torch.device`, *optional*):
|
138 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
139 |
+
n_tokens (`int`, *optional*):
|
140 |
+
Number of tokens in the input sequence.
|
141 |
+
"""
|
142 |
+
self.num_inference_steps = num_inference_steps
|
143 |
+
|
144 |
+
sigmas = torch.linspace(1, 0, num_inference_steps + 1)
|
145 |
+
sigmas = self.sd3_time_shift(sigmas)
|
146 |
+
|
147 |
+
if not self.config.reverse:
|
148 |
+
sigmas = 1 - sigmas
|
149 |
+
|
150 |
+
self.sigmas = sigmas
|
151 |
+
self.timesteps = (sigmas[:-1] * self.config.num_train_timesteps).to(
|
152 |
+
dtype=torch.float32, device=device
|
153 |
+
)
|
154 |
+
|
155 |
+
# Reset step index
|
156 |
+
self._step_index = None
|
157 |
+
|
158 |
+
def index_for_timestep(self, timestep, schedule_timesteps=None):
|
159 |
+
if schedule_timesteps is None:
|
160 |
+
schedule_timesteps = self.timesteps
|
161 |
+
|
162 |
+
indices = (schedule_timesteps == timestep).nonzero()
|
163 |
+
|
164 |
+
# The sigma index that is taken for the **very** first `step`
|
165 |
+
# is always the second index (or the last index if there is only 1)
|
166 |
+
# This way we can ensure we don't accidentally skip a sigma in
|
167 |
+
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
|
168 |
+
pos = 1 if len(indices) > 1 else 0
|
169 |
+
|
170 |
+
return indices[pos].item()
|
171 |
+
|
172 |
+
def _init_step_index(self, timestep):
|
173 |
+
if self.begin_index is None:
|
174 |
+
if isinstance(timestep, torch.Tensor):
|
175 |
+
timestep = timestep.to(self.timesteps.device)
|
176 |
+
self._step_index = self.index_for_timestep(timestep)
|
177 |
+
else:
|
178 |
+
self._step_index = self._begin_index
|
179 |
+
|
180 |
+
def scale_model_input(
|
181 |
+
self, sample: torch.Tensor, timestep: Optional[int] = None
|
182 |
+
) -> torch.Tensor:
|
183 |
+
return sample
|
184 |
+
|
185 |
+
def sd3_time_shift(self, t: torch.Tensor):
|
186 |
+
return (self.config.shift * t) / (1 + (self.config.shift - 1) * t)
|
187 |
+
|
188 |
+
def step(
|
189 |
+
self,
|
190 |
+
model_output: torch.FloatTensor,
|
191 |
+
timestep: Union[float, torch.FloatTensor],
|
192 |
+
sample: torch.FloatTensor,
|
193 |
+
return_dict: bool = True,
|
194 |
+
) -> Union[FlowMatchDiscreteSchedulerOutput, Tuple]:
|
195 |
+
"""
|
196 |
+
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
|
197 |
+
process from the learned model outputs (most often the predicted noise).
|
198 |
+
|
199 |
+
Args:
|
200 |
+
model_output (`torch.FloatTensor`):
|
201 |
+
The direct output from learned diffusion model.
|
202 |
+
timestep (`float`):
|
203 |
+
The current discrete timestep in the diffusion chain.
|
204 |
+
sample (`torch.FloatTensor`):
|
205 |
+
A current instance of a sample created by the diffusion process.
|
206 |
+
generator (`torch.Generator`, *optional*):
|
207 |
+
A random number generator.
|
208 |
+
n_tokens (`int`, *optional*):
|
209 |
+
Number of tokens in the input sequence.
|
210 |
+
return_dict (`bool`):
|
211 |
+
Whether or not to return a [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or
|
212 |
+
tuple.
|
213 |
+
|
214 |
+
Returns:
|
215 |
+
[`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or `tuple`:
|
216 |
+
If return_dict is `True`, [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] is
|
217 |
+
returned, otherwise a tuple is returned where the first element is the sample tensor.
|
218 |
+
"""
|
219 |
+
|
220 |
+
if (
|
221 |
+
isinstance(timestep, int)
|
222 |
+
or isinstance(timestep, torch.IntTensor)
|
223 |
+
or isinstance(timestep, torch.LongTensor)
|
224 |
+
):
|
225 |
+
raise ValueError(
|
226 |
+
(
|
227 |
+
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
|
228 |
+
" `EulerDiscreteScheduler.step()` is not supported. Make sure to pass"
|
229 |
+
" one of the `scheduler.timesteps` as a timestep."
|
230 |
+
),
|
231 |
+
)
|
232 |
+
|
233 |
+
if self.step_index is None:
|
234 |
+
self._init_step_index(timestep)
|
235 |
+
|
236 |
+
# Upcast to avoid precision issues when computing prev_sample
|
237 |
+
sample = sample.to(torch.float32)
|
238 |
+
|
239 |
+
dt = self.sigmas[self.step_index + 1] - self.sigmas[self.step_index]
|
240 |
+
|
241 |
+
if self.config.solver == "euler":
|
242 |
+
prev_sample = sample + model_output.to(torch.float32) * dt
|
243 |
+
else:
|
244 |
+
raise ValueError(
|
245 |
+
f"Solver {self.config.solver} not supported. Supported solvers: {self.supported_solver}"
|
246 |
+
)
|
247 |
+
|
248 |
+
# upon completion increase step index by one
|
249 |
+
self._step_index += 1
|
250 |
+
|
251 |
+
if not return_dict:
|
252 |
+
return (prev_sample,)
|
253 |
+
|
254 |
+
return FlowMatchDiscreteSchedulerOutput(prev_sample=prev_sample)
|
255 |
+
|
256 |
+
def __len__(self):
|
257 |
+
return self.config.num_train_timesteps
|
hyvideo/inference.py
ADDED
@@ -0,0 +1,672 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import time
|
3 |
+
import random
|
4 |
+
import functools
|
5 |
+
from typing import List, Optional, Tuple, Union
|
6 |
+
|
7 |
+
from pathlib import Path
|
8 |
+
from loguru import logger
|
9 |
+
|
10 |
+
import torch
|
11 |
+
import torch.distributed as dist
|
12 |
+
from hyvideo.constants import PROMPT_TEMPLATE, NEGATIVE_PROMPT, PRECISION_TO_TYPE
|
13 |
+
from hyvideo.vae import load_vae
|
14 |
+
from hyvideo.modules import load_model
|
15 |
+
from hyvideo.text_encoder import TextEncoder
|
16 |
+
from hyvideo.utils.data_utils import align_to
|
17 |
+
from hyvideo.modules.posemb_layers import get_nd_rotary_pos_embed
|
18 |
+
from hyvideo.diffusion.schedulers import FlowMatchDiscreteScheduler
|
19 |
+
from hyvideo.diffusion.pipelines import HunyuanVideoPipeline
|
20 |
+
|
21 |
+
try:
|
22 |
+
import xfuser
|
23 |
+
from xfuser.core.distributed import (
|
24 |
+
get_sequence_parallel_world_size,
|
25 |
+
get_sequence_parallel_rank,
|
26 |
+
get_sp_group,
|
27 |
+
initialize_model_parallel,
|
28 |
+
init_distributed_environment
|
29 |
+
)
|
30 |
+
except:
|
31 |
+
xfuser = None
|
32 |
+
get_sequence_parallel_world_size = None
|
33 |
+
get_sequence_parallel_rank = None
|
34 |
+
get_sp_group = None
|
35 |
+
initialize_model_parallel = None
|
36 |
+
init_distributed_environment = None
|
37 |
+
|
38 |
+
|
39 |
+
def parallelize_transformer(pipe):
|
40 |
+
transformer = pipe.transformer
|
41 |
+
original_forward = transformer.forward
|
42 |
+
|
43 |
+
@functools.wraps(transformer.__class__.forward)
|
44 |
+
def new_forward(
|
45 |
+
self,
|
46 |
+
x: torch.Tensor,
|
47 |
+
t: torch.Tensor, # Should be in range(0, 1000).
|
48 |
+
text_states: torch.Tensor = None,
|
49 |
+
text_mask: torch.Tensor = None, # Now we don't use it.
|
50 |
+
text_states_2: Optional[torch.Tensor] = None, # Text embedding for modulation.
|
51 |
+
freqs_cos: Optional[torch.Tensor] = None,
|
52 |
+
freqs_sin: Optional[torch.Tensor] = None,
|
53 |
+
guidance: torch.Tensor = None, # Guidance for modulation, should be cfg_scale x 1000.
|
54 |
+
return_dict: bool = True,
|
55 |
+
):
|
56 |
+
if x.shape[-2] // 2 % get_sequence_parallel_world_size() == 0:
|
57 |
+
# try to split x by height
|
58 |
+
split_dim = -2
|
59 |
+
elif x.shape[-1] // 2 % get_sequence_parallel_world_size() == 0:
|
60 |
+
# try to split x by width
|
61 |
+
split_dim = -1
|
62 |
+
else:
|
63 |
+
raise ValueError(f"Cannot split video sequence into ulysses_degree x ring_degree ({get_sequence_parallel_world_size()}) parts evenly")
|
64 |
+
|
65 |
+
# patch sizes for the temporal, height, and width dimensions are 1, 2, and 2.
|
66 |
+
temporal_size, h, w = x.shape[2], x.shape[3] // 2, x.shape[4] // 2
|
67 |
+
|
68 |
+
x = torch.chunk(x, get_sequence_parallel_world_size(),dim=split_dim)[get_sequence_parallel_rank()]
|
69 |
+
|
70 |
+
dim_thw = freqs_cos.shape[-1]
|
71 |
+
freqs_cos = freqs_cos.reshape(temporal_size, h, w, dim_thw)
|
72 |
+
freqs_cos = torch.chunk(freqs_cos, get_sequence_parallel_world_size(),dim=split_dim - 1)[get_sequence_parallel_rank()]
|
73 |
+
freqs_cos = freqs_cos.reshape(-1, dim_thw)
|
74 |
+
dim_thw = freqs_sin.shape[-1]
|
75 |
+
freqs_sin = freqs_sin.reshape(temporal_size, h, w, dim_thw)
|
76 |
+
freqs_sin = torch.chunk(freqs_sin, get_sequence_parallel_world_size(),dim=split_dim - 1)[get_sequence_parallel_rank()]
|
77 |
+
freqs_sin = freqs_sin.reshape(-1, dim_thw)
|
78 |
+
|
79 |
+
from xfuser.core.long_ctx_attention import xFuserLongContextAttention
|
80 |
+
|
81 |
+
for block in transformer.double_blocks + transformer.single_blocks:
|
82 |
+
block.hybrid_seq_parallel_attn = xFuserLongContextAttention()
|
83 |
+
|
84 |
+
output = original_forward(
|
85 |
+
x,
|
86 |
+
t,
|
87 |
+
text_states,
|
88 |
+
text_mask,
|
89 |
+
text_states_2,
|
90 |
+
freqs_cos,
|
91 |
+
freqs_sin,
|
92 |
+
guidance,
|
93 |
+
return_dict,
|
94 |
+
)
|
95 |
+
|
96 |
+
return_dict = not isinstance(output, tuple)
|
97 |
+
sample = output["x"]
|
98 |
+
sample = get_sp_group().all_gather(sample, dim=split_dim)
|
99 |
+
output["x"] = sample
|
100 |
+
return output
|
101 |
+
|
102 |
+
new_forward = new_forward.__get__(transformer)
|
103 |
+
transformer.forward = new_forward
|
104 |
+
|
105 |
+
|
106 |
+
class Inference(object):
|
107 |
+
def __init__(
|
108 |
+
self,
|
109 |
+
args,
|
110 |
+
vae,
|
111 |
+
vae_kwargs,
|
112 |
+
text_encoder,
|
113 |
+
model,
|
114 |
+
text_encoder_2=None,
|
115 |
+
pipeline=None,
|
116 |
+
use_cpu_offload=False,
|
117 |
+
device=None,
|
118 |
+
logger=None,
|
119 |
+
parallel_args=None,
|
120 |
+
):
|
121 |
+
self.vae = vae
|
122 |
+
self.vae_kwargs = vae_kwargs
|
123 |
+
|
124 |
+
self.text_encoder = text_encoder
|
125 |
+
self.text_encoder_2 = text_encoder_2
|
126 |
+
|
127 |
+
self.model = model
|
128 |
+
self.pipeline = pipeline
|
129 |
+
self.use_cpu_offload = use_cpu_offload
|
130 |
+
|
131 |
+
self.args = args
|
132 |
+
self.device = (
|
133 |
+
device
|
134 |
+
if device is not None
|
135 |
+
else "cuda"
|
136 |
+
if torch.cuda.is_available()
|
137 |
+
else "cpu"
|
138 |
+
)
|
139 |
+
self.logger = logger
|
140 |
+
self.parallel_args = parallel_args
|
141 |
+
|
142 |
+
@classmethod
|
143 |
+
def from_pretrained(cls, pretrained_model_path, args, device=None, **kwargs):
|
144 |
+
"""
|
145 |
+
Initialize the Inference pipeline.
|
146 |
+
|
147 |
+
Args:
|
148 |
+
pretrained_model_path (str or pathlib.Path): The model path, including t2v, text encoder and vae checkpoints.
|
149 |
+
args (argparse.Namespace): The arguments for the pipeline.
|
150 |
+
device (int): The device for inference. Default is 0.
|
151 |
+
"""
|
152 |
+
# ========================================================================
|
153 |
+
logger.info(f"Got text-to-video model root path: {pretrained_model_path}")
|
154 |
+
|
155 |
+
# ==================== Initialize Distributed Environment ================
|
156 |
+
if args.ulysses_degree > 1 or args.ring_degree > 1:
|
157 |
+
assert xfuser is not None, \
|
158 |
+
"Ulysses Attention and Ring Attention requires xfuser package."
|
159 |
+
|
160 |
+
assert args.use_cpu_offload is False, \
|
161 |
+
"Cannot enable use_cpu_offload in the distributed environment."
|
162 |
+
|
163 |
+
dist.init_process_group("nccl")
|
164 |
+
|
165 |
+
assert dist.get_world_size() == args.ring_degree * args.ulysses_degree, \
|
166 |
+
"number of GPUs should be equal to ring_degree * ulysses_degree."
|
167 |
+
|
168 |
+
init_distributed_environment(rank=dist.get_rank(), world_size=dist.get_world_size())
|
169 |
+
|
170 |
+
initialize_model_parallel(
|
171 |
+
sequence_parallel_degree=dist.get_world_size(),
|
172 |
+
ring_degree=args.ring_degree,
|
173 |
+
ulysses_degree=args.ulysses_degree,
|
174 |
+
)
|
175 |
+
device = torch.device(f"cuda:{os.environ['LOCAL_RANK']}")
|
176 |
+
else:
|
177 |
+
if device is None:
|
178 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
179 |
+
|
180 |
+
parallel_args = {"ulysses_degree": args.ulysses_degree, "ring_degree": args.ring_degree}
|
181 |
+
|
182 |
+
# ======================== Get the args path =============================
|
183 |
+
|
184 |
+
# Disable gradient
|
185 |
+
torch.set_grad_enabled(False)
|
186 |
+
|
187 |
+
# =========================== Build main model ===========================
|
188 |
+
logger.info("Building model...")
|
189 |
+
factor_kwargs = {"device": device, "dtype": PRECISION_TO_TYPE[args.precision]}
|
190 |
+
in_channels = args.latent_channels
|
191 |
+
out_channels = args.latent_channels
|
192 |
+
|
193 |
+
model = load_model(
|
194 |
+
args,
|
195 |
+
in_channels=in_channels,
|
196 |
+
out_channels=out_channels,
|
197 |
+
factor_kwargs=factor_kwargs,
|
198 |
+
)
|
199 |
+
model = model.to(device)
|
200 |
+
model = Inference.load_state_dict(args, model, pretrained_model_path)
|
201 |
+
model.eval()
|
202 |
+
|
203 |
+
# ============================= Build extra models ========================
|
204 |
+
# VAE
|
205 |
+
vae, _, s_ratio, t_ratio = load_vae(
|
206 |
+
args.vae,
|
207 |
+
args.vae_precision,
|
208 |
+
logger=logger,
|
209 |
+
device=device if not args.use_cpu_offload else "cpu",
|
210 |
+
)
|
211 |
+
vae_kwargs = {"s_ratio": s_ratio, "t_ratio": t_ratio}
|
212 |
+
|
213 |
+
# Text encoder
|
214 |
+
if args.prompt_template_video is not None:
|
215 |
+
crop_start = PROMPT_TEMPLATE[args.prompt_template_video].get(
|
216 |
+
"crop_start", 0
|
217 |
+
)
|
218 |
+
elif args.prompt_template is not None:
|
219 |
+
crop_start = PROMPT_TEMPLATE[args.prompt_template].get("crop_start", 0)
|
220 |
+
else:
|
221 |
+
crop_start = 0
|
222 |
+
max_length = args.text_len + crop_start
|
223 |
+
|
224 |
+
# prompt_template
|
225 |
+
prompt_template = (
|
226 |
+
PROMPT_TEMPLATE[args.prompt_template]
|
227 |
+
if args.prompt_template is not None
|
228 |
+
else None
|
229 |
+
)
|
230 |
+
|
231 |
+
# prompt_template_video
|
232 |
+
prompt_template_video = (
|
233 |
+
PROMPT_TEMPLATE[args.prompt_template_video]
|
234 |
+
if args.prompt_template_video is not None
|
235 |
+
else None
|
236 |
+
)
|
237 |
+
|
238 |
+
text_encoder = TextEncoder(
|
239 |
+
text_encoder_type=args.text_encoder,
|
240 |
+
max_length=max_length,
|
241 |
+
text_encoder_precision=args.text_encoder_precision,
|
242 |
+
tokenizer_type=args.tokenizer,
|
243 |
+
prompt_template=prompt_template,
|
244 |
+
prompt_template_video=prompt_template_video,
|
245 |
+
hidden_state_skip_layer=args.hidden_state_skip_layer,
|
246 |
+
apply_final_norm=args.apply_final_norm,
|
247 |
+
reproduce=args.reproduce,
|
248 |
+
logger=logger,
|
249 |
+
device=device if not args.use_cpu_offload else "cpu",
|
250 |
+
)
|
251 |
+
text_encoder_2 = None
|
252 |
+
if args.text_encoder_2 is not None:
|
253 |
+
text_encoder_2 = TextEncoder(
|
254 |
+
text_encoder_type=args.text_encoder_2,
|
255 |
+
max_length=args.text_len_2,
|
256 |
+
text_encoder_precision=args.text_encoder_precision_2,
|
257 |
+
tokenizer_type=args.tokenizer_2,
|
258 |
+
reproduce=args.reproduce,
|
259 |
+
logger=logger,
|
260 |
+
device=device if not args.use_cpu_offload else "cpu",
|
261 |
+
)
|
262 |
+
|
263 |
+
return cls(
|
264 |
+
args=args,
|
265 |
+
vae=vae,
|
266 |
+
vae_kwargs=vae_kwargs,
|
267 |
+
text_encoder=text_encoder,
|
268 |
+
text_encoder_2=text_encoder_2,
|
269 |
+
model=model,
|
270 |
+
use_cpu_offload=args.use_cpu_offload,
|
271 |
+
device=device,
|
272 |
+
logger=logger,
|
273 |
+
parallel_args=parallel_args
|
274 |
+
)
|
275 |
+
|
276 |
+
@staticmethod
|
277 |
+
def load_state_dict(args, model, pretrained_model_path):
|
278 |
+
load_key = args.load_key
|
279 |
+
dit_weight = Path(args.dit_weight)
|
280 |
+
|
281 |
+
if dit_weight is None:
|
282 |
+
model_dir = pretrained_model_path / f"t2v_{args.model_resolution}"
|
283 |
+
files = list(model_dir.glob("*.pt"))
|
284 |
+
if len(files) == 0:
|
285 |
+
raise ValueError(f"No model weights found in {model_dir}")
|
286 |
+
if str(files[0]).startswith("pytorch_model_"):
|
287 |
+
model_path = dit_weight / f"pytorch_model_{load_key}.pt"
|
288 |
+
bare_model = True
|
289 |
+
elif any(str(f).endswith("_model_states.pt") for f in files):
|
290 |
+
files = [f for f in files if str(f).endswith("_model_states.pt")]
|
291 |
+
model_path = files[0]
|
292 |
+
if len(files) > 1:
|
293 |
+
logger.warning(
|
294 |
+
f"Multiple model weights found in {dit_weight}, using {model_path}"
|
295 |
+
)
|
296 |
+
bare_model = False
|
297 |
+
else:
|
298 |
+
raise ValueError(
|
299 |
+
f"Invalid model path: {dit_weight} with unrecognized weight format: "
|
300 |
+
f"{list(map(str, files))}. When given a directory as --dit-weight, only "
|
301 |
+
f"`pytorch_model_*.pt`(provided by HunyuanDiT official) and "
|
302 |
+
f"`*_model_states.pt`(saved by deepspeed) can be parsed. If you want to load a "
|
303 |
+
f"specific weight file, please provide the full path to the file."
|
304 |
+
)
|
305 |
+
else:
|
306 |
+
if dit_weight.is_dir():
|
307 |
+
files = list(dit_weight.glob("*.pt"))
|
308 |
+
if len(files) == 0:
|
309 |
+
raise ValueError(f"No model weights found in {dit_weight}")
|
310 |
+
if str(files[0]).startswith("pytorch_model_"):
|
311 |
+
model_path = dit_weight / f"pytorch_model_{load_key}.pt"
|
312 |
+
bare_model = True
|
313 |
+
elif any(str(f).endswith("_model_states.pt") for f in files):
|
314 |
+
files = [f for f in files if str(f).endswith("_model_states.pt")]
|
315 |
+
model_path = files[0]
|
316 |
+
if len(files) > 1:
|
317 |
+
logger.warning(
|
318 |
+
f"Multiple model weights found in {dit_weight}, using {model_path}"
|
319 |
+
)
|
320 |
+
bare_model = False
|
321 |
+
else:
|
322 |
+
raise ValueError(
|
323 |
+
f"Invalid model path: {dit_weight} with unrecognized weight format: "
|
324 |
+
f"{list(map(str, files))}. When given a directory as --dit-weight, only "
|
325 |
+
f"`pytorch_model_*.pt`(provided by HunyuanDiT official) and "
|
326 |
+
f"`*_model_states.pt`(saved by deepspeed) can be parsed. If you want to load a "
|
327 |
+
f"specific weight file, please provide the full path to the file."
|
328 |
+
)
|
329 |
+
elif dit_weight.is_file():
|
330 |
+
model_path = dit_weight
|
331 |
+
bare_model = "unknown"
|
332 |
+
else:
|
333 |
+
raise ValueError(f"Invalid model path: {dit_weight}")
|
334 |
+
|
335 |
+
if not model_path.exists():
|
336 |
+
raise ValueError(f"model_path not exists: {model_path}")
|
337 |
+
logger.info(f"Loading torch model {model_path}...")
|
338 |
+
state_dict = torch.load(model_path, map_location=lambda storage, loc: storage)
|
339 |
+
|
340 |
+
if bare_model == "unknown" and ("ema" in state_dict or "module" in state_dict):
|
341 |
+
bare_model = False
|
342 |
+
if bare_model is False:
|
343 |
+
if load_key in state_dict:
|
344 |
+
state_dict = state_dict[load_key]
|
345 |
+
else:
|
346 |
+
raise KeyError(
|
347 |
+
f"Missing key: `{load_key}` in the checkpoint: {model_path}. The keys in the checkpoint "
|
348 |
+
f"are: {list(state_dict.keys())}."
|
349 |
+
)
|
350 |
+
model.load_state_dict(state_dict, strict=True)
|
351 |
+
return model
|
352 |
+
|
353 |
+
@staticmethod
|
354 |
+
def parse_size(size):
|
355 |
+
if isinstance(size, int):
|
356 |
+
size = [size]
|
357 |
+
if not isinstance(size, (list, tuple)):
|
358 |
+
raise ValueError(f"Size must be an integer or (height, width), got {size}.")
|
359 |
+
if len(size) == 1:
|
360 |
+
size = [size[0], size[0]]
|
361 |
+
if len(size) != 2:
|
362 |
+
raise ValueError(f"Size must be an integer or (height, width), got {size}.")
|
363 |
+
return size
|
364 |
+
|
365 |
+
|
366 |
+
class HunyuanVideoSampler(Inference):
|
367 |
+
def __init__(
|
368 |
+
self,
|
369 |
+
args,
|
370 |
+
vae,
|
371 |
+
vae_kwargs,
|
372 |
+
text_encoder,
|
373 |
+
model,
|
374 |
+
text_encoder_2=None,
|
375 |
+
pipeline=None,
|
376 |
+
use_cpu_offload=False,
|
377 |
+
device=0,
|
378 |
+
logger=None,
|
379 |
+
parallel_args=None
|
380 |
+
):
|
381 |
+
super().__init__(
|
382 |
+
args,
|
383 |
+
vae,
|
384 |
+
vae_kwargs,
|
385 |
+
text_encoder,
|
386 |
+
model,
|
387 |
+
text_encoder_2=text_encoder_2,
|
388 |
+
pipeline=pipeline,
|
389 |
+
use_cpu_offload=use_cpu_offload,
|
390 |
+
device=device,
|
391 |
+
logger=logger,
|
392 |
+
parallel_args=parallel_args
|
393 |
+
)
|
394 |
+
|
395 |
+
self.pipeline = self.load_diffusion_pipeline(
|
396 |
+
args=args,
|
397 |
+
vae=self.vae,
|
398 |
+
text_encoder=self.text_encoder,
|
399 |
+
text_encoder_2=self.text_encoder_2,
|
400 |
+
model=self.model,
|
401 |
+
device=self.device,
|
402 |
+
)
|
403 |
+
|
404 |
+
self.default_negative_prompt = NEGATIVE_PROMPT
|
405 |
+
|
406 |
+
def load_diffusion_pipeline(
|
407 |
+
self,
|
408 |
+
args,
|
409 |
+
vae,
|
410 |
+
text_encoder,
|
411 |
+
text_encoder_2,
|
412 |
+
model,
|
413 |
+
scheduler=None,
|
414 |
+
device=None,
|
415 |
+
progress_bar_config=None,
|
416 |
+
data_type="video",
|
417 |
+
):
|
418 |
+
"""Load the denoising scheduler for inference."""
|
419 |
+
if scheduler is None:
|
420 |
+
if args.denoise_type == "flow":
|
421 |
+
scheduler = FlowMatchDiscreteScheduler(
|
422 |
+
shift=args.flow_shift,
|
423 |
+
reverse=args.flow_reverse,
|
424 |
+
solver=args.flow_solver,
|
425 |
+
)
|
426 |
+
else:
|
427 |
+
raise ValueError(f"Invalid denoise type {args.denoise_type}")
|
428 |
+
|
429 |
+
pipeline = HunyuanVideoPipeline(
|
430 |
+
vae=vae,
|
431 |
+
text_encoder=text_encoder,
|
432 |
+
text_encoder_2=text_encoder_2,
|
433 |
+
transformer=model,
|
434 |
+
scheduler=scheduler,
|
435 |
+
progress_bar_config=progress_bar_config,
|
436 |
+
args=args,
|
437 |
+
)
|
438 |
+
if self.use_cpu_offload:
|
439 |
+
pipeline.enable_sequential_cpu_offload()
|
440 |
+
else:
|
441 |
+
pipeline = pipeline.to(device)
|
442 |
+
|
443 |
+
return pipeline
|
444 |
+
|
445 |
+
def get_rotary_pos_embed(self, video_length, height, width):
|
446 |
+
target_ndim = 3
|
447 |
+
ndim = 5 - 2
|
448 |
+
# 884
|
449 |
+
if "884" in self.args.vae:
|
450 |
+
latents_size = [(video_length - 1) // 4 + 1, height // 8, width // 8]
|
451 |
+
elif "888" in self.args.vae:
|
452 |
+
latents_size = [(video_length - 1) // 8 + 1, height // 8, width // 8]
|
453 |
+
else:
|
454 |
+
latents_size = [video_length, height // 8, width // 8]
|
455 |
+
|
456 |
+
if isinstance(self.model.patch_size, int):
|
457 |
+
assert all(s % self.model.patch_size == 0 for s in latents_size), (
|
458 |
+
f"Latent size(last {ndim} dimensions) should be divisible by patch size({self.model.patch_size}), "
|
459 |
+
f"but got {latents_size}."
|
460 |
+
)
|
461 |
+
rope_sizes = [s // self.model.patch_size for s in latents_size]
|
462 |
+
elif isinstance(self.model.patch_size, list):
|
463 |
+
assert all(
|
464 |
+
s % self.model.patch_size[idx] == 0
|
465 |
+
for idx, s in enumerate(latents_size)
|
466 |
+
), (
|
467 |
+
f"Latent size(last {ndim} dimensions) should be divisible by patch size({self.model.patch_size}), "
|
468 |
+
f"but got {latents_size}."
|
469 |
+
)
|
470 |
+
rope_sizes = [
|
471 |
+
s // self.model.patch_size[idx] for idx, s in enumerate(latents_size)
|
472 |
+
]
|
473 |
+
|
474 |
+
if len(rope_sizes) != target_ndim:
|
475 |
+
rope_sizes = [1] * (target_ndim - len(rope_sizes)) + rope_sizes # time axis
|
476 |
+
head_dim = self.model.hidden_size // self.model.heads_num
|
477 |
+
rope_dim_list = self.model.rope_dim_list
|
478 |
+
if rope_dim_list is None:
|
479 |
+
rope_dim_list = [head_dim // target_ndim for _ in range(target_ndim)]
|
480 |
+
assert (
|
481 |
+
sum(rope_dim_list) == head_dim
|
482 |
+
), "sum(rope_dim_list) should equal to head_dim of attention layer"
|
483 |
+
freqs_cos, freqs_sin = get_nd_rotary_pos_embed(
|
484 |
+
rope_dim_list,
|
485 |
+
rope_sizes,
|
486 |
+
theta=self.args.rope_theta,
|
487 |
+
use_real=True,
|
488 |
+
theta_rescale_factor=1,
|
489 |
+
)
|
490 |
+
return freqs_cos, freqs_sin
|
491 |
+
|
492 |
+
@torch.no_grad()
|
493 |
+
def predict(
|
494 |
+
self,
|
495 |
+
prompt,
|
496 |
+
height=192,
|
497 |
+
width=336,
|
498 |
+
video_length=129,
|
499 |
+
seed=None,
|
500 |
+
negative_prompt=None,
|
501 |
+
infer_steps=50,
|
502 |
+
guidance_scale=6,
|
503 |
+
flow_shift=5.0,
|
504 |
+
embedded_guidance_scale=None,
|
505 |
+
batch_size=1,
|
506 |
+
num_videos_per_prompt=1,
|
507 |
+
**kwargs,
|
508 |
+
):
|
509 |
+
"""
|
510 |
+
Predict the image/video from the given text.
|
511 |
+
|
512 |
+
Args:
|
513 |
+
prompt (str or List[str]): The input text.
|
514 |
+
kwargs:
|
515 |
+
height (int): The height of the output video. Default is 192.
|
516 |
+
width (int): The width of the output video. Default is 336.
|
517 |
+
video_length (int): The frame number of the output video. Default is 129.
|
518 |
+
seed (int or List[str]): The random seed for the generation. Default is a random integer.
|
519 |
+
negative_prompt (str or List[str]): The negative text prompt. Default is an empty string.
|
520 |
+
guidance_scale (float): The guidance scale for the generation. Default is 6.0.
|
521 |
+
num_images_per_prompt (int): The number of images per prompt. Default is 1.
|
522 |
+
infer_steps (int): The number of inference steps. Default is 100.
|
523 |
+
"""
|
524 |
+
if self.parallel_args['ulysses_degree'] > 1 or self.parallel_args['ring_degree'] > 1:
|
525 |
+
assert seed is not None, \
|
526 |
+
"You have to set a seed in the distributed environment, please rerun with --seed <your-seed>."
|
527 |
+
|
528 |
+
parallelize_transformer(self.pipeline)
|
529 |
+
|
530 |
+
out_dict = dict()
|
531 |
+
|
532 |
+
# ========================================================================
|
533 |
+
# Arguments: seed
|
534 |
+
# ========================================================================
|
535 |
+
if isinstance(seed, torch.Tensor):
|
536 |
+
seed = seed.tolist()
|
537 |
+
if seed is None:
|
538 |
+
seeds = [
|
539 |
+
random.randint(0, 1_000_000)
|
540 |
+
for _ in range(batch_size * num_videos_per_prompt)
|
541 |
+
]
|
542 |
+
elif isinstance(seed, int):
|
543 |
+
seeds = [
|
544 |
+
seed + i
|
545 |
+
for _ in range(batch_size)
|
546 |
+
for i in range(num_videos_per_prompt)
|
547 |
+
]
|
548 |
+
elif isinstance(seed, (list, tuple)):
|
549 |
+
if len(seed) == batch_size:
|
550 |
+
seeds = [
|
551 |
+
int(seed[i]) + j
|
552 |
+
for i in range(batch_size)
|
553 |
+
for j in range(num_videos_per_prompt)
|
554 |
+
]
|
555 |
+
elif len(seed) == batch_size * num_videos_per_prompt:
|
556 |
+
seeds = [int(s) for s in seed]
|
557 |
+
else:
|
558 |
+
raise ValueError(
|
559 |
+
f"Length of seed must be equal to number of prompt(batch_size) or "
|
560 |
+
f"batch_size * num_videos_per_prompt ({batch_size} * {num_videos_per_prompt}), got {seed}."
|
561 |
+
)
|
562 |
+
else:
|
563 |
+
raise ValueError(
|
564 |
+
f"Seed must be an integer, a list of integers, or None, got {seed}."
|
565 |
+
)
|
566 |
+
generator = [torch.Generator(self.device).manual_seed(seed) for seed in seeds]
|
567 |
+
out_dict["seeds"] = seeds
|
568 |
+
|
569 |
+
# ========================================================================
|
570 |
+
# Arguments: target_width, target_height, target_video_length
|
571 |
+
# ========================================================================
|
572 |
+
if width <= 0 or height <= 0 or video_length <= 0:
|
573 |
+
raise ValueError(
|
574 |
+
f"`height` and `width` and `video_length` must be positive integers, got height={height}, width={width}, video_length={video_length}"
|
575 |
+
)
|
576 |
+
if (video_length - 1) % 4 != 0:
|
577 |
+
raise ValueError(
|
578 |
+
f"`video_length-1` must be a multiple of 4, got {video_length}"
|
579 |
+
)
|
580 |
+
|
581 |
+
logger.info(
|
582 |
+
f"Input (height, width, video_length) = ({height}, {width}, {video_length})"
|
583 |
+
)
|
584 |
+
|
585 |
+
target_height = align_to(height, 16)
|
586 |
+
target_width = align_to(width, 16)
|
587 |
+
target_video_length = video_length
|
588 |
+
|
589 |
+
out_dict["size"] = (target_height, target_width, target_video_length)
|
590 |
+
|
591 |
+
# ========================================================================
|
592 |
+
# Arguments: prompt, new_prompt, negative_prompt
|
593 |
+
# ========================================================================
|
594 |
+
if not isinstance(prompt, str):
|
595 |
+
raise TypeError(f"`prompt` must be a string, but got {type(prompt)}")
|
596 |
+
prompt = [prompt.strip()]
|
597 |
+
|
598 |
+
# negative prompt
|
599 |
+
if negative_prompt is None or negative_prompt == "":
|
600 |
+
negative_prompt = self.default_negative_prompt
|
601 |
+
if not isinstance(negative_prompt, str):
|
602 |
+
raise TypeError(
|
603 |
+
f"`negative_prompt` must be a string, but got {type(negative_prompt)}"
|
604 |
+
)
|
605 |
+
negative_prompt = [negative_prompt.strip()]
|
606 |
+
|
607 |
+
# ========================================================================
|
608 |
+
# Scheduler
|
609 |
+
# ========================================================================
|
610 |
+
scheduler = FlowMatchDiscreteScheduler(
|
611 |
+
shift=flow_shift,
|
612 |
+
reverse=self.args.flow_reverse,
|
613 |
+
solver=self.args.flow_solver
|
614 |
+
)
|
615 |
+
self.pipeline.scheduler = scheduler
|
616 |
+
|
617 |
+
# ========================================================================
|
618 |
+
# Build Rope freqs
|
619 |
+
# ========================================================================
|
620 |
+
freqs_cos, freqs_sin = self.get_rotary_pos_embed(
|
621 |
+
target_video_length, target_height, target_width
|
622 |
+
)
|
623 |
+
n_tokens = freqs_cos.shape[0]
|
624 |
+
|
625 |
+
# ========================================================================
|
626 |
+
# Print infer args
|
627 |
+
# ========================================================================
|
628 |
+
debug_str = f"""
|
629 |
+
height: {target_height}
|
630 |
+
width: {target_width}
|
631 |
+
video_length: {target_video_length}
|
632 |
+
prompt: {prompt}
|
633 |
+
neg_prompt: {negative_prompt}
|
634 |
+
seed: {seed}
|
635 |
+
infer_steps: {infer_steps}
|
636 |
+
num_videos_per_prompt: {num_videos_per_prompt}
|
637 |
+
guidance_scale: {guidance_scale}
|
638 |
+
n_tokens: {n_tokens}
|
639 |
+
flow_shift: {flow_shift}
|
640 |
+
embedded_guidance_scale: {embedded_guidance_scale}"""
|
641 |
+
logger.debug(debug_str)
|
642 |
+
|
643 |
+
# ========================================================================
|
644 |
+
# Pipeline inference
|
645 |
+
# ========================================================================
|
646 |
+
start_time = time.time()
|
647 |
+
samples = self.pipeline(
|
648 |
+
prompt=prompt,
|
649 |
+
height=target_height,
|
650 |
+
width=target_width,
|
651 |
+
video_length=target_video_length,
|
652 |
+
num_inference_steps=infer_steps,
|
653 |
+
guidance_scale=guidance_scale,
|
654 |
+
negative_prompt=negative_prompt,
|
655 |
+
num_videos_per_prompt=num_videos_per_prompt,
|
656 |
+
generator=generator,
|
657 |
+
output_type="pil",
|
658 |
+
freqs_cis=(freqs_cos, freqs_sin),
|
659 |
+
n_tokens=n_tokens,
|
660 |
+
embedded_guidance_scale=embedded_guidance_scale,
|
661 |
+
data_type="video" if target_video_length > 1 else "image",
|
662 |
+
is_progress_bar=True,
|
663 |
+
vae_ver=self.args.vae,
|
664 |
+
enable_tiling=self.args.vae_tiling,
|
665 |
+
)[0]
|
666 |
+
out_dict["samples"] = samples
|
667 |
+
out_dict["prompts"] = prompt
|
668 |
+
|
669 |
+
gen_time = time.time() - start_time
|
670 |
+
logger.info(f"Success, time: {gen_time}")
|
671 |
+
|
672 |
+
return out_dict
|
hyvideo/modules/__init__.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .models import HYVideoDiffusionTransformer, HUNYUAN_VIDEO_CONFIG
|
2 |
+
|
3 |
+
|
4 |
+
def load_model(args, in_channels, out_channels, factor_kwargs):
|
5 |
+
"""load hunyuan video model
|
6 |
+
|
7 |
+
Args:
|
8 |
+
args (dict): model args
|
9 |
+
in_channels (int): input channels number
|
10 |
+
out_channels (int): output channels number
|
11 |
+
factor_kwargs (dict): factor kwargs
|
12 |
+
|
13 |
+
Returns:
|
14 |
+
model (nn.Module): The hunyuan video model
|
15 |
+
"""
|
16 |
+
if args.model in HUNYUAN_VIDEO_CONFIG.keys():
|
17 |
+
model = HYVideoDiffusionTransformer(
|
18 |
+
args,
|
19 |
+
in_channels=in_channels,
|
20 |
+
out_channels=out_channels,
|
21 |
+
**HUNYUAN_VIDEO_CONFIG[args.model],
|
22 |
+
**factor_kwargs,
|
23 |
+
)
|
24 |
+
return model
|
25 |
+
else:
|
26 |
+
raise NotImplementedError()
|
hyvideo/modules/activation_layers.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
|
3 |
+
|
4 |
+
def get_activation_layer(act_type):
|
5 |
+
"""get activation layer
|
6 |
+
|
7 |
+
Args:
|
8 |
+
act_type (str): the activation type
|
9 |
+
|
10 |
+
Returns:
|
11 |
+
torch.nn.functional: the activation layer
|
12 |
+
"""
|
13 |
+
if act_type == "gelu":
|
14 |
+
return lambda: nn.GELU()
|
15 |
+
elif act_type == "gelu_tanh":
|
16 |
+
# Approximate `tanh` requires torch >= 1.13
|
17 |
+
return lambda: nn.GELU(approximate="tanh")
|
18 |
+
elif act_type == "relu":
|
19 |
+
return nn.ReLU
|
20 |
+
elif act_type == "silu":
|
21 |
+
return nn.SiLU
|
22 |
+
else:
|
23 |
+
raise ValueError(f"Unknown activation type: {act_type}")
|
hyvideo/modules/attenion.py
ADDED
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import importlib.metadata
|
2 |
+
import math
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
|
8 |
+
try:
|
9 |
+
import flash_attn
|
10 |
+
from flash_attn.flash_attn_interface import _flash_attn_forward
|
11 |
+
from flash_attn.flash_attn_interface import flash_attn_varlen_func
|
12 |
+
except ImportError:
|
13 |
+
flash_attn = None
|
14 |
+
flash_attn_varlen_func = None
|
15 |
+
_flash_attn_forward = None
|
16 |
+
|
17 |
+
|
18 |
+
MEMORY_LAYOUT = {
|
19 |
+
"flash": (
|
20 |
+
lambda x: x.view(x.shape[0] * x.shape[1], *x.shape[2:]),
|
21 |
+
lambda x: x,
|
22 |
+
),
|
23 |
+
"torch": (
|
24 |
+
lambda x: x.transpose(1, 2),
|
25 |
+
lambda x: x.transpose(1, 2),
|
26 |
+
),
|
27 |
+
"vanilla": (
|
28 |
+
lambda x: x.transpose(1, 2),
|
29 |
+
lambda x: x.transpose(1, 2),
|
30 |
+
),
|
31 |
+
}
|
32 |
+
|
33 |
+
|
34 |
+
def get_cu_seqlens(text_mask, img_len):
|
35 |
+
"""Calculate cu_seqlens_q, cu_seqlens_kv using text_mask and img_len
|
36 |
+
|
37 |
+
Args:
|
38 |
+
text_mask (torch.Tensor): the mask of text
|
39 |
+
img_len (int): the length of image
|
40 |
+
|
41 |
+
Returns:
|
42 |
+
torch.Tensor: the calculated cu_seqlens for flash attention
|
43 |
+
"""
|
44 |
+
batch_size = text_mask.shape[0]
|
45 |
+
text_len = text_mask.sum(dim=1)
|
46 |
+
max_len = text_mask.shape[1] + img_len
|
47 |
+
|
48 |
+
cu_seqlens = torch.zeros([2 * batch_size + 1], dtype=torch.int32, device="cuda")
|
49 |
+
|
50 |
+
for i in range(batch_size):
|
51 |
+
s = text_len[i] + img_len
|
52 |
+
s1 = i * max_len + s
|
53 |
+
s2 = (i + 1) * max_len
|
54 |
+
cu_seqlens[2 * i + 1] = s1
|
55 |
+
cu_seqlens[2 * i + 2] = s2
|
56 |
+
|
57 |
+
return cu_seqlens
|
58 |
+
|
59 |
+
|
60 |
+
def attention(
|
61 |
+
q,
|
62 |
+
k,
|
63 |
+
v,
|
64 |
+
mode="flash",
|
65 |
+
drop_rate=0,
|
66 |
+
attn_mask=None,
|
67 |
+
causal=False,
|
68 |
+
cu_seqlens_q=None,
|
69 |
+
cu_seqlens_kv=None,
|
70 |
+
max_seqlen_q=None,
|
71 |
+
max_seqlen_kv=None,
|
72 |
+
batch_size=1,
|
73 |
+
):
|
74 |
+
"""
|
75 |
+
Perform QKV self attention.
|
76 |
+
|
77 |
+
Args:
|
78 |
+
q (torch.Tensor): Query tensor with shape [b, s, a, d], where a is the number of heads.
|
79 |
+
k (torch.Tensor): Key tensor with shape [b, s1, a, d]
|
80 |
+
v (torch.Tensor): Value tensor with shape [b, s1, a, d]
|
81 |
+
mode (str): Attention mode. Choose from 'self_flash', 'cross_flash', 'torch', and 'vanilla'.
|
82 |
+
drop_rate (float): Dropout rate in attention map. (default: 0)
|
83 |
+
attn_mask (torch.Tensor): Attention mask with shape [b, s1] (cross_attn), or [b, a, s, s1] (torch or vanilla).
|
84 |
+
(default: None)
|
85 |
+
causal (bool): Whether to use causal attention. (default: False)
|
86 |
+
cu_seqlens_q (torch.Tensor): dtype torch.int32. The cumulative sequence lengths of the sequences in the batch,
|
87 |
+
used to index into q.
|
88 |
+
cu_seqlens_kv (torch.Tensor): dtype torch.int32. The cumulative sequence lengths of the sequences in the batch,
|
89 |
+
used to index into kv.
|
90 |
+
max_seqlen_q (int): The maximum sequence length in the batch of q.
|
91 |
+
max_seqlen_kv (int): The maximum sequence length in the batch of k and v.
|
92 |
+
|
93 |
+
Returns:
|
94 |
+
torch.Tensor: Output tensor after self attention with shape [b, s, ad]
|
95 |
+
"""
|
96 |
+
pre_attn_layout, post_attn_layout = MEMORY_LAYOUT[mode]
|
97 |
+
q = pre_attn_layout(q)
|
98 |
+
k = pre_attn_layout(k)
|
99 |
+
v = pre_attn_layout(v)
|
100 |
+
|
101 |
+
if mode == "torch":
|
102 |
+
if attn_mask is not None and attn_mask.dtype != torch.bool:
|
103 |
+
attn_mask = attn_mask.to(q.dtype)
|
104 |
+
x = F.scaled_dot_product_attention(
|
105 |
+
q, k, v, attn_mask=attn_mask, dropout_p=drop_rate, is_causal=causal
|
106 |
+
)
|
107 |
+
elif mode == "flash":
|
108 |
+
x = flash_attn_varlen_func(
|
109 |
+
q,
|
110 |
+
k,
|
111 |
+
v,
|
112 |
+
cu_seqlens_q,
|
113 |
+
cu_seqlens_kv,
|
114 |
+
max_seqlen_q,
|
115 |
+
max_seqlen_kv,
|
116 |
+
)
|
117 |
+
# x with shape [(bxs), a, d]
|
118 |
+
x = x.view(
|
119 |
+
batch_size, max_seqlen_q, x.shape[-2], x.shape[-1]
|
120 |
+
) # reshape x to [b, s, a, d]
|
121 |
+
elif mode == "vanilla":
|
122 |
+
scale_factor = 1 / math.sqrt(q.size(-1))
|
123 |
+
|
124 |
+
b, a, s, _ = q.shape
|
125 |
+
s1 = k.size(2)
|
126 |
+
attn_bias = torch.zeros(b, a, s, s1, dtype=q.dtype, device=q.device)
|
127 |
+
if causal:
|
128 |
+
# Only applied to self attention
|
129 |
+
assert (
|
130 |
+
attn_mask is None
|
131 |
+
), "Causal mask and attn_mask cannot be used together"
|
132 |
+
temp_mask = torch.ones(b, a, s, s, dtype=torch.bool, device=q.device).tril(
|
133 |
+
diagonal=0
|
134 |
+
)
|
135 |
+
attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf"))
|
136 |
+
attn_bias.to(q.dtype)
|
137 |
+
|
138 |
+
if attn_mask is not None:
|
139 |
+
if attn_mask.dtype == torch.bool:
|
140 |
+
attn_bias.masked_fill_(attn_mask.logical_not(), float("-inf"))
|
141 |
+
else:
|
142 |
+
attn_bias += attn_mask
|
143 |
+
|
144 |
+
# TODO: Maybe force q and k to be float32 to avoid numerical overflow
|
145 |
+
attn = (q @ k.transpose(-2, -1)) * scale_factor
|
146 |
+
attn += attn_bias
|
147 |
+
attn = attn.softmax(dim=-1)
|
148 |
+
attn = torch.dropout(attn, p=drop_rate, train=True)
|
149 |
+
x = attn @ v
|
150 |
+
else:
|
151 |
+
raise NotImplementedError(f"Unsupported attention mode: {mode}")
|
152 |
+
|
153 |
+
x = post_attn_layout(x)
|
154 |
+
b, s, a, d = x.shape
|
155 |
+
out = x.reshape(b, s, -1)
|
156 |
+
return out
|
157 |
+
|
158 |
+
|
159 |
+
def parallel_attention(
|
160 |
+
hybrid_seq_parallel_attn,
|
161 |
+
q,
|
162 |
+
k,
|
163 |
+
v,
|
164 |
+
img_q_len,
|
165 |
+
img_kv_len,
|
166 |
+
cu_seqlens_q,
|
167 |
+
cu_seqlens_kv
|
168 |
+
):
|
169 |
+
attn1 = hybrid_seq_parallel_attn(
|
170 |
+
None,
|
171 |
+
q[:, :img_q_len, :, :],
|
172 |
+
k[:, :img_kv_len, :, :],
|
173 |
+
v[:, :img_kv_len, :, :],
|
174 |
+
dropout_p=0.0,
|
175 |
+
causal=False,
|
176 |
+
joint_tensor_query=q[:,img_q_len:cu_seqlens_q[1]],
|
177 |
+
joint_tensor_key=k[:,img_kv_len:cu_seqlens_kv[1]],
|
178 |
+
joint_tensor_value=v[:,img_kv_len:cu_seqlens_kv[1]],
|
179 |
+
joint_strategy="rear",
|
180 |
+
)
|
181 |
+
if flash_attn.__version__ >= '2.7.0':
|
182 |
+
attn2, *_ = _flash_attn_forward(
|
183 |
+
q[:,cu_seqlens_q[1]:],
|
184 |
+
k[:,cu_seqlens_kv[1]:],
|
185 |
+
v[:,cu_seqlens_kv[1]:],
|
186 |
+
dropout_p=0.0,
|
187 |
+
softmax_scale=q.shape[-1] ** (-0.5),
|
188 |
+
causal=False,
|
189 |
+
window_size_left=-1,
|
190 |
+
window_size_right=-1,
|
191 |
+
softcap=0.0,
|
192 |
+
alibi_slopes=None,
|
193 |
+
return_softmax=False,
|
194 |
+
)
|
195 |
+
else:
|
196 |
+
attn2, *_ = _flash_attn_forward(
|
197 |
+
q[:,cu_seqlens_q[1]:],
|
198 |
+
k[:,cu_seqlens_kv[1]:],
|
199 |
+
v[:,cu_seqlens_kv[1]:],
|
200 |
+
dropout_p=0.0,
|
201 |
+
softmax_scale=q.shape[-1] ** (-0.5),
|
202 |
+
causal=False,
|
203 |
+
window_size=(-1, -1),
|
204 |
+
softcap=0.0,
|
205 |
+
alibi_slopes=None,
|
206 |
+
return_softmax=False,
|
207 |
+
)
|
208 |
+
attn = torch.cat([attn1, attn2], dim=1)
|
209 |
+
b, s, a, d = attn.shape
|
210 |
+
attn = attn.reshape(b, s, -1)
|
211 |
+
|
212 |
+
return attn
|
hyvideo/modules/embed_layers.py
ADDED
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
from einops import rearrange, repeat
|
5 |
+
|
6 |
+
from ..utils.helpers import to_2tuple
|
7 |
+
|
8 |
+
|
9 |
+
class PatchEmbed(nn.Module):
|
10 |
+
"""2D Image to Patch Embedding
|
11 |
+
|
12 |
+
Image to Patch Embedding using Conv2d
|
13 |
+
|
14 |
+
A convolution based approach to patchifying a 2D image w/ embedding projection.
|
15 |
+
|
16 |
+
Based on the impl in https://github.com/google-research/vision_transformer
|
17 |
+
|
18 |
+
Hacked together by / Copyright 2020 Ross Wightman
|
19 |
+
|
20 |
+
Remove the _assert function in forward function to be compatible with multi-resolution images.
|
21 |
+
"""
|
22 |
+
|
23 |
+
def __init__(
|
24 |
+
self,
|
25 |
+
patch_size=16,
|
26 |
+
in_chans=3,
|
27 |
+
embed_dim=768,
|
28 |
+
norm_layer=None,
|
29 |
+
flatten=True,
|
30 |
+
bias=True,
|
31 |
+
dtype=None,
|
32 |
+
device=None,
|
33 |
+
):
|
34 |
+
factory_kwargs = {"dtype": dtype, "device": device}
|
35 |
+
super().__init__()
|
36 |
+
patch_size = to_2tuple(patch_size)
|
37 |
+
self.patch_size = patch_size
|
38 |
+
self.flatten = flatten
|
39 |
+
|
40 |
+
self.proj = nn.Conv3d(
|
41 |
+
in_chans,
|
42 |
+
embed_dim,
|
43 |
+
kernel_size=patch_size,
|
44 |
+
stride=patch_size,
|
45 |
+
bias=bias,
|
46 |
+
**factory_kwargs
|
47 |
+
)
|
48 |
+
nn.init.xavier_uniform_(self.proj.weight.view(self.proj.weight.size(0), -1))
|
49 |
+
if bias:
|
50 |
+
nn.init.zeros_(self.proj.bias)
|
51 |
+
|
52 |
+
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
|
53 |
+
|
54 |
+
def forward(self, x):
|
55 |
+
x = self.proj(x)
|
56 |
+
if self.flatten:
|
57 |
+
x = x.flatten(2).transpose(1, 2) # BCHW -> BNC
|
58 |
+
x = self.norm(x)
|
59 |
+
return x
|
60 |
+
|
61 |
+
|
62 |
+
class TextProjection(nn.Module):
|
63 |
+
"""
|
64 |
+
Projects text embeddings. Also handles dropout for classifier-free guidance.
|
65 |
+
|
66 |
+
Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/nets/PixArt_blocks.py
|
67 |
+
"""
|
68 |
+
|
69 |
+
def __init__(self, in_channels, hidden_size, act_layer, dtype=None, device=None):
|
70 |
+
factory_kwargs = {"dtype": dtype, "device": device}
|
71 |
+
super().__init__()
|
72 |
+
self.linear_1 = nn.Linear(
|
73 |
+
in_features=in_channels,
|
74 |
+
out_features=hidden_size,
|
75 |
+
bias=True,
|
76 |
+
**factory_kwargs
|
77 |
+
)
|
78 |
+
self.act_1 = act_layer()
|
79 |
+
self.linear_2 = nn.Linear(
|
80 |
+
in_features=hidden_size,
|
81 |
+
out_features=hidden_size,
|
82 |
+
bias=True,
|
83 |
+
**factory_kwargs
|
84 |
+
)
|
85 |
+
|
86 |
+
def forward(self, caption):
|
87 |
+
hidden_states = self.linear_1(caption)
|
88 |
+
hidden_states = self.act_1(hidden_states)
|
89 |
+
hidden_states = self.linear_2(hidden_states)
|
90 |
+
return hidden_states
|
91 |
+
|
92 |
+
|
93 |
+
def timestep_embedding(t, dim, max_period=10000):
|
94 |
+
"""
|
95 |
+
Create sinusoidal timestep embeddings.
|
96 |
+
|
97 |
+
Args:
|
98 |
+
t (torch.Tensor): a 1-D Tensor of N indices, one per batch element. These may be fractional.
|
99 |
+
dim (int): the dimension of the output.
|
100 |
+
max_period (int): controls the minimum frequency of the embeddings.
|
101 |
+
|
102 |
+
Returns:
|
103 |
+
embedding (torch.Tensor): An (N, D) Tensor of positional embeddings.
|
104 |
+
|
105 |
+
.. ref_link: https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
|
106 |
+
"""
|
107 |
+
half = dim // 2
|
108 |
+
freqs = torch.exp(
|
109 |
+
-math.log(max_period)
|
110 |
+
* torch.arange(start=0, end=half, dtype=torch.float32)
|
111 |
+
/ half
|
112 |
+
).to(device=t.device)
|
113 |
+
args = t[:, None].float() * freqs[None]
|
114 |
+
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
115 |
+
if dim % 2:
|
116 |
+
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
117 |
+
return embedding
|
118 |
+
|
119 |
+
|
120 |
+
class TimestepEmbedder(nn.Module):
|
121 |
+
"""
|
122 |
+
Embeds scalar timesteps into vector representations.
|
123 |
+
"""
|
124 |
+
|
125 |
+
def __init__(
|
126 |
+
self,
|
127 |
+
hidden_size,
|
128 |
+
act_layer,
|
129 |
+
frequency_embedding_size=256,
|
130 |
+
max_period=10000,
|
131 |
+
out_size=None,
|
132 |
+
dtype=None,
|
133 |
+
device=None,
|
134 |
+
):
|
135 |
+
factory_kwargs = {"dtype": dtype, "device": device}
|
136 |
+
super().__init__()
|
137 |
+
self.frequency_embedding_size = frequency_embedding_size
|
138 |
+
self.max_period = max_period
|
139 |
+
if out_size is None:
|
140 |
+
out_size = hidden_size
|
141 |
+
|
142 |
+
self.mlp = nn.Sequential(
|
143 |
+
nn.Linear(
|
144 |
+
frequency_embedding_size, hidden_size, bias=True, **factory_kwargs
|
145 |
+
),
|
146 |
+
act_layer(),
|
147 |
+
nn.Linear(hidden_size, out_size, bias=True, **factory_kwargs),
|
148 |
+
)
|
149 |
+
nn.init.normal_(self.mlp[0].weight, std=0.02)
|
150 |
+
nn.init.normal_(self.mlp[2].weight, std=0.02)
|
151 |
+
|
152 |
+
def forward(self, t):
|
153 |
+
t_freq = timestep_embedding(
|
154 |
+
t, self.frequency_embedding_size, self.max_period
|
155 |
+
).type(self.mlp[0].weight.dtype)
|
156 |
+
t_emb = self.mlp(t_freq)
|
157 |
+
return t_emb
|
hyvideo/modules/mlp_layers.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Modified from timm library:
|
2 |
+
# https://github.com/huggingface/pytorch-image-models/blob/648aaa41233ba83eb38faf5ba9d415d574823241/timm/layers/mlp.py#L13
|
3 |
+
|
4 |
+
from functools import partial
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
|
9 |
+
from .modulate_layers import modulate
|
10 |
+
from ..utils.helpers import to_2tuple
|
11 |
+
|
12 |
+
|
13 |
+
class MLP(nn.Module):
|
14 |
+
"""MLP as used in Vision Transformer, MLP-Mixer and related networks"""
|
15 |
+
|
16 |
+
def __init__(
|
17 |
+
self,
|
18 |
+
in_channels,
|
19 |
+
hidden_channels=None,
|
20 |
+
out_features=None,
|
21 |
+
act_layer=nn.GELU,
|
22 |
+
norm_layer=None,
|
23 |
+
bias=True,
|
24 |
+
drop=0.0,
|
25 |
+
use_conv=False,
|
26 |
+
device=None,
|
27 |
+
dtype=None,
|
28 |
+
):
|
29 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
30 |
+
super().__init__()
|
31 |
+
out_features = out_features or in_channels
|
32 |
+
hidden_channels = hidden_channels or in_channels
|
33 |
+
bias = to_2tuple(bias)
|
34 |
+
drop_probs = to_2tuple(drop)
|
35 |
+
linear_layer = partial(nn.Conv2d, kernel_size=1) if use_conv else nn.Linear
|
36 |
+
|
37 |
+
self.fc1 = linear_layer(
|
38 |
+
in_channels, hidden_channels, bias=bias[0], **factory_kwargs
|
39 |
+
)
|
40 |
+
self.act = act_layer()
|
41 |
+
self.drop1 = nn.Dropout(drop_probs[0])
|
42 |
+
self.norm = (
|
43 |
+
norm_layer(hidden_channels, **factory_kwargs)
|
44 |
+
if norm_layer is not None
|
45 |
+
else nn.Identity()
|
46 |
+
)
|
47 |
+
self.fc2 = linear_layer(
|
48 |
+
hidden_channels, out_features, bias=bias[1], **factory_kwargs
|
49 |
+
)
|
50 |
+
self.drop2 = nn.Dropout(drop_probs[1])
|
51 |
+
|
52 |
+
def forward(self, x):
|
53 |
+
x = self.fc1(x)
|
54 |
+
x = self.act(x)
|
55 |
+
x = self.drop1(x)
|
56 |
+
x = self.norm(x)
|
57 |
+
x = self.fc2(x)
|
58 |
+
x = self.drop2(x)
|
59 |
+
return x
|
60 |
+
|
61 |
+
|
62 |
+
#
|
63 |
+
class MLPEmbedder(nn.Module):
|
64 |
+
"""copied from https://github.com/black-forest-labs/flux/blob/main/src/flux/modules/layers.py"""
|
65 |
+
def __init__(self, in_dim: int, hidden_dim: int, device=None, dtype=None):
|
66 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
67 |
+
super().__init__()
|
68 |
+
self.in_layer = nn.Linear(in_dim, hidden_dim, bias=True, **factory_kwargs)
|
69 |
+
self.silu = nn.SiLU()
|
70 |
+
self.out_layer = nn.Linear(hidden_dim, hidden_dim, bias=True, **factory_kwargs)
|
71 |
+
|
72 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
73 |
+
return self.out_layer(self.silu(self.in_layer(x)))
|
74 |
+
|
75 |
+
|
76 |
+
class FinalLayer(nn.Module):
|
77 |
+
"""The final layer of DiT."""
|
78 |
+
|
79 |
+
def __init__(
|
80 |
+
self, hidden_size, patch_size, out_channels, act_layer, device=None, dtype=None
|
81 |
+
):
|
82 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
83 |
+
super().__init__()
|
84 |
+
|
85 |
+
# Just use LayerNorm for the final layer
|
86 |
+
self.norm_final = nn.LayerNorm(
|
87 |
+
hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs
|
88 |
+
)
|
89 |
+
if isinstance(patch_size, int):
|
90 |
+
self.linear = nn.Linear(
|
91 |
+
hidden_size,
|
92 |
+
patch_size * patch_size * out_channels,
|
93 |
+
bias=True,
|
94 |
+
**factory_kwargs
|
95 |
+
)
|
96 |
+
else:
|
97 |
+
self.linear = nn.Linear(
|
98 |
+
hidden_size,
|
99 |
+
patch_size[0] * patch_size[1] * patch_size[2] * out_channels,
|
100 |
+
bias=True,
|
101 |
+
)
|
102 |
+
nn.init.zeros_(self.linear.weight)
|
103 |
+
nn.init.zeros_(self.linear.bias)
|
104 |
+
|
105 |
+
# Here we don't distinguish between the modulate types. Just use the simple one.
|
106 |
+
self.adaLN_modulation = nn.Sequential(
|
107 |
+
act_layer(),
|
108 |
+
nn.Linear(hidden_size, 2 * hidden_size, bias=True, **factory_kwargs),
|
109 |
+
)
|
110 |
+
# Zero-initialize the modulation
|
111 |
+
nn.init.zeros_(self.adaLN_modulation[1].weight)
|
112 |
+
nn.init.zeros_(self.adaLN_modulation[1].bias)
|
113 |
+
|
114 |
+
def forward(self, x, c):
|
115 |
+
shift, scale = self.adaLN_modulation(c).chunk(2, dim=1)
|
116 |
+
x = modulate(self.norm_final(x), shift=shift, scale=scale)
|
117 |
+
x = self.linear(x)
|
118 |
+
return x
|
hyvideo/modules/models.py
ADDED
@@ -0,0 +1,760 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, List, Tuple, Optional, Union, Dict
|
2 |
+
from einops import rearrange
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
|
8 |
+
from diffusers.models import ModelMixin
|
9 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
10 |
+
|
11 |
+
from .activation_layers import get_activation_layer
|
12 |
+
from .norm_layers import get_norm_layer
|
13 |
+
from .embed_layers import TimestepEmbedder, PatchEmbed, TextProjection
|
14 |
+
from .attenion import attention, parallel_attention, get_cu_seqlens
|
15 |
+
from .posemb_layers import apply_rotary_emb
|
16 |
+
from .mlp_layers import MLP, MLPEmbedder, FinalLayer
|
17 |
+
from .modulate_layers import ModulateDiT, modulate, apply_gate
|
18 |
+
from .token_refiner import SingleTokenRefiner
|
19 |
+
|
20 |
+
|
21 |
+
class MMDoubleStreamBlock(nn.Module):
|
22 |
+
"""
|
23 |
+
A multimodal dit block with seperate modulation for
|
24 |
+
text and image/video, see more details (SD3): https://arxiv.org/abs/2403.03206
|
25 |
+
(Flux.1): https://github.com/black-forest-labs/flux
|
26 |
+
"""
|
27 |
+
|
28 |
+
def __init__(
|
29 |
+
self,
|
30 |
+
hidden_size: int,
|
31 |
+
heads_num: int,
|
32 |
+
mlp_width_ratio: float,
|
33 |
+
mlp_act_type: str = "gelu_tanh",
|
34 |
+
qk_norm: bool = True,
|
35 |
+
qk_norm_type: str = "rms",
|
36 |
+
qkv_bias: bool = False,
|
37 |
+
dtype: Optional[torch.dtype] = None,
|
38 |
+
device: Optional[torch.device] = None,
|
39 |
+
):
|
40 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
41 |
+
super().__init__()
|
42 |
+
|
43 |
+
self.deterministic = False
|
44 |
+
self.heads_num = heads_num
|
45 |
+
head_dim = hidden_size // heads_num
|
46 |
+
mlp_hidden_dim = int(hidden_size * mlp_width_ratio)
|
47 |
+
|
48 |
+
self.img_mod = ModulateDiT(
|
49 |
+
hidden_size,
|
50 |
+
factor=6,
|
51 |
+
act_layer=get_activation_layer("silu"),
|
52 |
+
**factory_kwargs,
|
53 |
+
)
|
54 |
+
self.img_norm1 = nn.LayerNorm(
|
55 |
+
hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs
|
56 |
+
)
|
57 |
+
|
58 |
+
self.img_attn_qkv = nn.Linear(
|
59 |
+
hidden_size, hidden_size * 3, bias=qkv_bias, **factory_kwargs
|
60 |
+
)
|
61 |
+
qk_norm_layer = get_norm_layer(qk_norm_type)
|
62 |
+
self.img_attn_q_norm = (
|
63 |
+
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs)
|
64 |
+
if qk_norm
|
65 |
+
else nn.Identity()
|
66 |
+
)
|
67 |
+
self.img_attn_k_norm = (
|
68 |
+
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs)
|
69 |
+
if qk_norm
|
70 |
+
else nn.Identity()
|
71 |
+
)
|
72 |
+
self.img_attn_proj = nn.Linear(
|
73 |
+
hidden_size, hidden_size, bias=qkv_bias, **factory_kwargs
|
74 |
+
)
|
75 |
+
|
76 |
+
self.img_norm2 = nn.LayerNorm(
|
77 |
+
hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs
|
78 |
+
)
|
79 |
+
self.img_mlp = MLP(
|
80 |
+
hidden_size,
|
81 |
+
mlp_hidden_dim,
|
82 |
+
act_layer=get_activation_layer(mlp_act_type),
|
83 |
+
bias=True,
|
84 |
+
**factory_kwargs,
|
85 |
+
)
|
86 |
+
|
87 |
+
self.txt_mod = ModulateDiT(
|
88 |
+
hidden_size,
|
89 |
+
factor=6,
|
90 |
+
act_layer=get_activation_layer("silu"),
|
91 |
+
**factory_kwargs,
|
92 |
+
)
|
93 |
+
self.txt_norm1 = nn.LayerNorm(
|
94 |
+
hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs
|
95 |
+
)
|
96 |
+
|
97 |
+
self.txt_attn_qkv = nn.Linear(
|
98 |
+
hidden_size, hidden_size * 3, bias=qkv_bias, **factory_kwargs
|
99 |
+
)
|
100 |
+
self.txt_attn_q_norm = (
|
101 |
+
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs)
|
102 |
+
if qk_norm
|
103 |
+
else nn.Identity()
|
104 |
+
)
|
105 |
+
self.txt_attn_k_norm = (
|
106 |
+
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs)
|
107 |
+
if qk_norm
|
108 |
+
else nn.Identity()
|
109 |
+
)
|
110 |
+
self.txt_attn_proj = nn.Linear(
|
111 |
+
hidden_size, hidden_size, bias=qkv_bias, **factory_kwargs
|
112 |
+
)
|
113 |
+
|
114 |
+
self.txt_norm2 = nn.LayerNorm(
|
115 |
+
hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs
|
116 |
+
)
|
117 |
+
self.txt_mlp = MLP(
|
118 |
+
hidden_size,
|
119 |
+
mlp_hidden_dim,
|
120 |
+
act_layer=get_activation_layer(mlp_act_type),
|
121 |
+
bias=True,
|
122 |
+
**factory_kwargs,
|
123 |
+
)
|
124 |
+
self.hybrid_seq_parallel_attn = None
|
125 |
+
|
126 |
+
def enable_deterministic(self):
|
127 |
+
self.deterministic = True
|
128 |
+
|
129 |
+
def disable_deterministic(self):
|
130 |
+
self.deterministic = False
|
131 |
+
|
132 |
+
def forward(
|
133 |
+
self,
|
134 |
+
img: torch.Tensor,
|
135 |
+
txt: torch.Tensor,
|
136 |
+
vec: torch.Tensor,
|
137 |
+
cu_seqlens_q: Optional[torch.Tensor] = None,
|
138 |
+
cu_seqlens_kv: Optional[torch.Tensor] = None,
|
139 |
+
max_seqlen_q: Optional[int] = None,
|
140 |
+
max_seqlen_kv: Optional[int] = None,
|
141 |
+
freqs_cis: tuple = None,
|
142 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
143 |
+
(
|
144 |
+
img_mod1_shift,
|
145 |
+
img_mod1_scale,
|
146 |
+
img_mod1_gate,
|
147 |
+
img_mod2_shift,
|
148 |
+
img_mod2_scale,
|
149 |
+
img_mod2_gate,
|
150 |
+
) = self.img_mod(vec).chunk(6, dim=-1)
|
151 |
+
(
|
152 |
+
txt_mod1_shift,
|
153 |
+
txt_mod1_scale,
|
154 |
+
txt_mod1_gate,
|
155 |
+
txt_mod2_shift,
|
156 |
+
txt_mod2_scale,
|
157 |
+
txt_mod2_gate,
|
158 |
+
) = self.txt_mod(vec).chunk(6, dim=-1)
|
159 |
+
|
160 |
+
# Prepare image for attention.
|
161 |
+
img_modulated = self.img_norm1(img)
|
162 |
+
img_modulated = modulate(
|
163 |
+
img_modulated, shift=img_mod1_shift, scale=img_mod1_scale
|
164 |
+
)
|
165 |
+
img_qkv = self.img_attn_qkv(img_modulated)
|
166 |
+
img_q, img_k, img_v = rearrange(
|
167 |
+
img_qkv, "B L (K H D) -> K B L H D", K=3, H=self.heads_num
|
168 |
+
)
|
169 |
+
# Apply QK-Norm if needed
|
170 |
+
img_q = self.img_attn_q_norm(img_q).to(img_v)
|
171 |
+
img_k = self.img_attn_k_norm(img_k).to(img_v)
|
172 |
+
|
173 |
+
# Apply RoPE if needed.
|
174 |
+
if freqs_cis is not None:
|
175 |
+
img_qq, img_kk = apply_rotary_emb(img_q, img_k, freqs_cis, head_first=False)
|
176 |
+
assert (
|
177 |
+
img_qq.shape == img_q.shape and img_kk.shape == img_k.shape
|
178 |
+
), f"img_kk: {img_qq.shape}, img_q: {img_q.shape}, img_kk: {img_kk.shape}, img_k: {img_k.shape}"
|
179 |
+
img_q, img_k = img_qq, img_kk
|
180 |
+
|
181 |
+
# Prepare txt for attention.
|
182 |
+
txt_modulated = self.txt_norm1(txt)
|
183 |
+
txt_modulated = modulate(
|
184 |
+
txt_modulated, shift=txt_mod1_shift, scale=txt_mod1_scale
|
185 |
+
)
|
186 |
+
txt_qkv = self.txt_attn_qkv(txt_modulated)
|
187 |
+
txt_q, txt_k, txt_v = rearrange(
|
188 |
+
txt_qkv, "B L (K H D) -> K B L H D", K=3, H=self.heads_num
|
189 |
+
)
|
190 |
+
# Apply QK-Norm if needed.
|
191 |
+
txt_q = self.txt_attn_q_norm(txt_q).to(txt_v)
|
192 |
+
txt_k = self.txt_attn_k_norm(txt_k).to(txt_v)
|
193 |
+
|
194 |
+
# Run actual attention.
|
195 |
+
q = torch.cat((img_q, txt_q), dim=1)
|
196 |
+
k = torch.cat((img_k, txt_k), dim=1)
|
197 |
+
v = torch.cat((img_v, txt_v), dim=1)
|
198 |
+
assert (
|
199 |
+
cu_seqlens_q.shape[0] == 2 * img.shape[0] + 1
|
200 |
+
), f"cu_seqlens_q.shape:{cu_seqlens_q.shape}, img.shape[0]:{img.shape[0]}"
|
201 |
+
|
202 |
+
# attention computation start
|
203 |
+
if not self.hybrid_seq_parallel_attn:
|
204 |
+
attn = attention(
|
205 |
+
q,
|
206 |
+
k,
|
207 |
+
v,
|
208 |
+
cu_seqlens_q=cu_seqlens_q,
|
209 |
+
cu_seqlens_kv=cu_seqlens_kv,
|
210 |
+
max_seqlen_q=max_seqlen_q,
|
211 |
+
max_seqlen_kv=max_seqlen_kv,
|
212 |
+
batch_size=img_k.shape[0],
|
213 |
+
)
|
214 |
+
else:
|
215 |
+
attn = parallel_attention(
|
216 |
+
self.hybrid_seq_parallel_attn,
|
217 |
+
q,
|
218 |
+
k,
|
219 |
+
v,
|
220 |
+
img_q_len=img_q.shape[1],
|
221 |
+
img_kv_len=img_k.shape[1],
|
222 |
+
cu_seqlens_q=cu_seqlens_q,
|
223 |
+
cu_seqlens_kv=cu_seqlens_kv
|
224 |
+
)
|
225 |
+
|
226 |
+
# attention computation end
|
227 |
+
|
228 |
+
img_attn, txt_attn = attn[:, : img.shape[1]], attn[:, img.shape[1] :]
|
229 |
+
|
230 |
+
# Calculate the img bloks.
|
231 |
+
img = img + apply_gate(self.img_attn_proj(img_attn), gate=img_mod1_gate)
|
232 |
+
img = img + apply_gate(
|
233 |
+
self.img_mlp(
|
234 |
+
modulate(
|
235 |
+
self.img_norm2(img), shift=img_mod2_shift, scale=img_mod2_scale
|
236 |
+
)
|
237 |
+
),
|
238 |
+
gate=img_mod2_gate,
|
239 |
+
)
|
240 |
+
|
241 |
+
# Calculate the txt bloks.
|
242 |
+
txt = txt + apply_gate(self.txt_attn_proj(txt_attn), gate=txt_mod1_gate)
|
243 |
+
txt = txt + apply_gate(
|
244 |
+
self.txt_mlp(
|
245 |
+
modulate(
|
246 |
+
self.txt_norm2(txt), shift=txt_mod2_shift, scale=txt_mod2_scale
|
247 |
+
)
|
248 |
+
),
|
249 |
+
gate=txt_mod2_gate,
|
250 |
+
)
|
251 |
+
|
252 |
+
return img, txt
|
253 |
+
|
254 |
+
|
255 |
+
class MMSingleStreamBlock(nn.Module):
|
256 |
+
"""
|
257 |
+
A DiT block with parallel linear layers as described in
|
258 |
+
https://arxiv.org/abs/2302.05442 and adapted modulation interface.
|
259 |
+
Also refer to (SD3): https://arxiv.org/abs/2403.03206
|
260 |
+
(Flux.1): https://github.com/black-forest-labs/flux
|
261 |
+
"""
|
262 |
+
|
263 |
+
def __init__(
|
264 |
+
self,
|
265 |
+
hidden_size: int,
|
266 |
+
heads_num: int,
|
267 |
+
mlp_width_ratio: float = 4.0,
|
268 |
+
mlp_act_type: str = "gelu_tanh",
|
269 |
+
qk_norm: bool = True,
|
270 |
+
qk_norm_type: str = "rms",
|
271 |
+
qk_scale: float = None,
|
272 |
+
dtype: Optional[torch.dtype] = None,
|
273 |
+
device: Optional[torch.device] = None,
|
274 |
+
):
|
275 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
276 |
+
super().__init__()
|
277 |
+
|
278 |
+
self.deterministic = False
|
279 |
+
self.hidden_size = hidden_size
|
280 |
+
self.heads_num = heads_num
|
281 |
+
head_dim = hidden_size // heads_num
|
282 |
+
mlp_hidden_dim = int(hidden_size * mlp_width_ratio)
|
283 |
+
self.mlp_hidden_dim = mlp_hidden_dim
|
284 |
+
self.scale = qk_scale or head_dim ** -0.5
|
285 |
+
|
286 |
+
# qkv and mlp_in
|
287 |
+
self.linear1 = nn.Linear(
|
288 |
+
hidden_size, hidden_size * 3 + mlp_hidden_dim, **factory_kwargs
|
289 |
+
)
|
290 |
+
# proj and mlp_out
|
291 |
+
self.linear2 = nn.Linear(
|
292 |
+
hidden_size + mlp_hidden_dim, hidden_size, **factory_kwargs
|
293 |
+
)
|
294 |
+
|
295 |
+
qk_norm_layer = get_norm_layer(qk_norm_type)
|
296 |
+
self.q_norm = (
|
297 |
+
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs)
|
298 |
+
if qk_norm
|
299 |
+
else nn.Identity()
|
300 |
+
)
|
301 |
+
self.k_norm = (
|
302 |
+
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs)
|
303 |
+
if qk_norm
|
304 |
+
else nn.Identity()
|
305 |
+
)
|
306 |
+
|
307 |
+
self.pre_norm = nn.LayerNorm(
|
308 |
+
hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs
|
309 |
+
)
|
310 |
+
|
311 |
+
self.mlp_act = get_activation_layer(mlp_act_type)()
|
312 |
+
self.modulation = ModulateDiT(
|
313 |
+
hidden_size,
|
314 |
+
factor=3,
|
315 |
+
act_layer=get_activation_layer("silu"),
|
316 |
+
**factory_kwargs,
|
317 |
+
)
|
318 |
+
self.hybrid_seq_parallel_attn = None
|
319 |
+
|
320 |
+
def enable_deterministic(self):
|
321 |
+
self.deterministic = True
|
322 |
+
|
323 |
+
def disable_deterministic(self):
|
324 |
+
self.deterministic = False
|
325 |
+
|
326 |
+
def forward(
|
327 |
+
self,
|
328 |
+
x: torch.Tensor,
|
329 |
+
vec: torch.Tensor,
|
330 |
+
txt_len: int,
|
331 |
+
cu_seqlens_q: Optional[torch.Tensor] = None,
|
332 |
+
cu_seqlens_kv: Optional[torch.Tensor] = None,
|
333 |
+
max_seqlen_q: Optional[int] = None,
|
334 |
+
max_seqlen_kv: Optional[int] = None,
|
335 |
+
freqs_cis: Tuple[torch.Tensor, torch.Tensor] = None,
|
336 |
+
) -> torch.Tensor:
|
337 |
+
mod_shift, mod_scale, mod_gate = self.modulation(vec).chunk(3, dim=-1)
|
338 |
+
x_mod = modulate(self.pre_norm(x), shift=mod_shift, scale=mod_scale)
|
339 |
+
qkv, mlp = torch.split(
|
340 |
+
self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1
|
341 |
+
)
|
342 |
+
|
343 |
+
q, k, v = rearrange(qkv, "B L (K H D) -> K B L H D", K=3, H=self.heads_num)
|
344 |
+
|
345 |
+
# Apply QK-Norm if needed.
|
346 |
+
q = self.q_norm(q).to(v)
|
347 |
+
k = self.k_norm(k).to(v)
|
348 |
+
|
349 |
+
# Apply RoPE if needed.
|
350 |
+
if freqs_cis is not None:
|
351 |
+
img_q, txt_q = q[:, :-txt_len, :, :], q[:, -txt_len:, :, :]
|
352 |
+
img_k, txt_k = k[:, :-txt_len, :, :], k[:, -txt_len:, :, :]
|
353 |
+
img_qq, img_kk = apply_rotary_emb(img_q, img_k, freqs_cis, head_first=False)
|
354 |
+
assert (
|
355 |
+
img_qq.shape == img_q.shape and img_kk.shape == img_k.shape
|
356 |
+
), f"img_kk: {img_qq.shape}, img_q: {img_q.shape}, img_kk: {img_kk.shape}, img_k: {img_k.shape}"
|
357 |
+
img_q, img_k = img_qq, img_kk
|
358 |
+
q = torch.cat((img_q, txt_q), dim=1)
|
359 |
+
k = torch.cat((img_k, txt_k), dim=1)
|
360 |
+
|
361 |
+
# Compute attention.
|
362 |
+
assert (
|
363 |
+
cu_seqlens_q.shape[0] == 2 * x.shape[0] + 1
|
364 |
+
), f"cu_seqlens_q.shape:{cu_seqlens_q.shape}, x.shape[0]:{x.shape[0]}"
|
365 |
+
|
366 |
+
# attention computation start
|
367 |
+
if not self.hybrid_seq_parallel_attn:
|
368 |
+
attn = attention(
|
369 |
+
q,
|
370 |
+
k,
|
371 |
+
v,
|
372 |
+
cu_seqlens_q=cu_seqlens_q,
|
373 |
+
cu_seqlens_kv=cu_seqlens_kv,
|
374 |
+
max_seqlen_q=max_seqlen_q,
|
375 |
+
max_seqlen_kv=max_seqlen_kv,
|
376 |
+
batch_size=x.shape[0],
|
377 |
+
)
|
378 |
+
else:
|
379 |
+
attn = parallel_attention(
|
380 |
+
self.hybrid_seq_parallel_attn,
|
381 |
+
q,
|
382 |
+
k,
|
383 |
+
v,
|
384 |
+
img_q_len=img_q.shape[1],
|
385 |
+
img_kv_len=img_k.shape[1],
|
386 |
+
cu_seqlens_q=cu_seqlens_q,
|
387 |
+
cu_seqlens_kv=cu_seqlens_kv
|
388 |
+
)
|
389 |
+
# attention computation end
|
390 |
+
|
391 |
+
# Compute activation in mlp stream, cat again and run second linear layer.
|
392 |
+
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
|
393 |
+
return x + apply_gate(output, gate=mod_gate)
|
394 |
+
|
395 |
+
|
396 |
+
class HYVideoDiffusionTransformer(ModelMixin, ConfigMixin):
|
397 |
+
"""
|
398 |
+
HunyuanVideo Transformer backbone
|
399 |
+
|
400 |
+
Inherited from ModelMixin and ConfigMixin for compatibility with diffusers' sampler StableDiffusionPipeline.
|
401 |
+
|
402 |
+
Reference:
|
403 |
+
[1] Flux.1: https://github.com/black-forest-labs/flux
|
404 |
+
[2] MMDiT: http://arxiv.org/abs/2403.03206
|
405 |
+
|
406 |
+
Parameters
|
407 |
+
----------
|
408 |
+
args: argparse.Namespace
|
409 |
+
The arguments parsed by argparse.
|
410 |
+
patch_size: list
|
411 |
+
The size of the patch.
|
412 |
+
in_channels: int
|
413 |
+
The number of input channels.
|
414 |
+
out_channels: int
|
415 |
+
The number of output channels.
|
416 |
+
hidden_size: int
|
417 |
+
The hidden size of the transformer backbone.
|
418 |
+
heads_num: int
|
419 |
+
The number of attention heads.
|
420 |
+
mlp_width_ratio: float
|
421 |
+
The ratio of the hidden size of the MLP in the transformer block.
|
422 |
+
mlp_act_type: str
|
423 |
+
The activation function of the MLP in the transformer block.
|
424 |
+
depth_double_blocks: int
|
425 |
+
The number of transformer blocks in the double blocks.
|
426 |
+
depth_single_blocks: int
|
427 |
+
The number of transformer blocks in the single blocks.
|
428 |
+
rope_dim_list: list
|
429 |
+
The dimension of the rotary embedding for t, h, w.
|
430 |
+
qkv_bias: bool
|
431 |
+
Whether to use bias in the qkv linear layer.
|
432 |
+
qk_norm: bool
|
433 |
+
Whether to use qk norm.
|
434 |
+
qk_norm_type: str
|
435 |
+
The type of qk norm.
|
436 |
+
guidance_embed: bool
|
437 |
+
Whether to use guidance embedding for distillation.
|
438 |
+
text_projection: str
|
439 |
+
The type of the text projection, default is single_refiner.
|
440 |
+
use_attention_mask: bool
|
441 |
+
Whether to use attention mask for text encoder.
|
442 |
+
dtype: torch.dtype
|
443 |
+
The dtype of the model.
|
444 |
+
device: torch.device
|
445 |
+
The device of the model.
|
446 |
+
"""
|
447 |
+
|
448 |
+
@register_to_config
|
449 |
+
def __init__(
|
450 |
+
self,
|
451 |
+
args: Any,
|
452 |
+
patch_size: list = [1, 2, 2],
|
453 |
+
in_channels: int = 4, # Should be VAE.config.latent_channels.
|
454 |
+
out_channels: int = None,
|
455 |
+
hidden_size: int = 3072,
|
456 |
+
heads_num: int = 24,
|
457 |
+
mlp_width_ratio: float = 4.0,
|
458 |
+
mlp_act_type: str = "gelu_tanh",
|
459 |
+
mm_double_blocks_depth: int = 20,
|
460 |
+
mm_single_blocks_depth: int = 40,
|
461 |
+
rope_dim_list: List[int] = [16, 56, 56],
|
462 |
+
qkv_bias: bool = True,
|
463 |
+
qk_norm: bool = True,
|
464 |
+
qk_norm_type: str = "rms",
|
465 |
+
guidance_embed: bool = False, # For modulation.
|
466 |
+
text_projection: str = "single_refiner",
|
467 |
+
use_attention_mask: bool = True,
|
468 |
+
dtype: Optional[torch.dtype] = None,
|
469 |
+
device: Optional[torch.device] = None,
|
470 |
+
):
|
471 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
472 |
+
super().__init__()
|
473 |
+
|
474 |
+
self.patch_size = patch_size
|
475 |
+
self.in_channels = in_channels
|
476 |
+
self.out_channels = in_channels if out_channels is None else out_channels
|
477 |
+
self.unpatchify_channels = self.out_channels
|
478 |
+
self.guidance_embed = guidance_embed
|
479 |
+
self.rope_dim_list = rope_dim_list
|
480 |
+
|
481 |
+
# Text projection. Default to linear projection.
|
482 |
+
# Alternative: TokenRefiner. See more details (LI-DiT): http://arxiv.org/abs/2406.11831
|
483 |
+
self.use_attention_mask = use_attention_mask
|
484 |
+
self.text_projection = text_projection
|
485 |
+
|
486 |
+
self.text_states_dim = args.text_states_dim
|
487 |
+
self.text_states_dim_2 = args.text_states_dim_2
|
488 |
+
|
489 |
+
if hidden_size % heads_num != 0:
|
490 |
+
raise ValueError(
|
491 |
+
f"Hidden size {hidden_size} must be divisible by heads_num {heads_num}"
|
492 |
+
)
|
493 |
+
pe_dim = hidden_size // heads_num
|
494 |
+
if sum(rope_dim_list) != pe_dim:
|
495 |
+
raise ValueError(
|
496 |
+
f"Got {rope_dim_list} but expected positional dim {pe_dim}"
|
497 |
+
)
|
498 |
+
self.hidden_size = hidden_size
|
499 |
+
self.heads_num = heads_num
|
500 |
+
|
501 |
+
# image projection
|
502 |
+
self.img_in = PatchEmbed(
|
503 |
+
self.patch_size, self.in_channels, self.hidden_size, **factory_kwargs
|
504 |
+
)
|
505 |
+
|
506 |
+
# text projection
|
507 |
+
if self.text_projection == "linear":
|
508 |
+
self.txt_in = TextProjection(
|
509 |
+
self.text_states_dim,
|
510 |
+
self.hidden_size,
|
511 |
+
get_activation_layer("silu"),
|
512 |
+
**factory_kwargs,
|
513 |
+
)
|
514 |
+
elif self.text_projection == "single_refiner":
|
515 |
+
self.txt_in = SingleTokenRefiner(
|
516 |
+
self.text_states_dim, hidden_size, heads_num, depth=2, **factory_kwargs
|
517 |
+
)
|
518 |
+
else:
|
519 |
+
raise NotImplementedError(
|
520 |
+
f"Unsupported text_projection: {self.text_projection}"
|
521 |
+
)
|
522 |
+
|
523 |
+
# time modulation
|
524 |
+
self.time_in = TimestepEmbedder(
|
525 |
+
self.hidden_size, get_activation_layer("silu"), **factory_kwargs
|
526 |
+
)
|
527 |
+
|
528 |
+
# text modulation
|
529 |
+
self.vector_in = MLPEmbedder(
|
530 |
+
self.text_states_dim_2, self.hidden_size, **factory_kwargs
|
531 |
+
)
|
532 |
+
|
533 |
+
# guidance modulation
|
534 |
+
self.guidance_in = (
|
535 |
+
TimestepEmbedder(
|
536 |
+
self.hidden_size, get_activation_layer("silu"), **factory_kwargs
|
537 |
+
)
|
538 |
+
if guidance_embed
|
539 |
+
else None
|
540 |
+
)
|
541 |
+
|
542 |
+
# double blocks
|
543 |
+
self.double_blocks = nn.ModuleList(
|
544 |
+
[
|
545 |
+
MMDoubleStreamBlock(
|
546 |
+
self.hidden_size,
|
547 |
+
self.heads_num,
|
548 |
+
mlp_width_ratio=mlp_width_ratio,
|
549 |
+
mlp_act_type=mlp_act_type,
|
550 |
+
qk_norm=qk_norm,
|
551 |
+
qk_norm_type=qk_norm_type,
|
552 |
+
qkv_bias=qkv_bias,
|
553 |
+
**factory_kwargs,
|
554 |
+
)
|
555 |
+
for _ in range(mm_double_blocks_depth)
|
556 |
+
]
|
557 |
+
)
|
558 |
+
|
559 |
+
# single blocks
|
560 |
+
self.single_blocks = nn.ModuleList(
|
561 |
+
[
|
562 |
+
MMSingleStreamBlock(
|
563 |
+
self.hidden_size,
|
564 |
+
self.heads_num,
|
565 |
+
mlp_width_ratio=mlp_width_ratio,
|
566 |
+
mlp_act_type=mlp_act_type,
|
567 |
+
qk_norm=qk_norm,
|
568 |
+
qk_norm_type=qk_norm_type,
|
569 |
+
**factory_kwargs,
|
570 |
+
)
|
571 |
+
for _ in range(mm_single_blocks_depth)
|
572 |
+
]
|
573 |
+
)
|
574 |
+
|
575 |
+
self.final_layer = FinalLayer(
|
576 |
+
self.hidden_size,
|
577 |
+
self.patch_size,
|
578 |
+
self.out_channels,
|
579 |
+
get_activation_layer("silu"),
|
580 |
+
**factory_kwargs,
|
581 |
+
)
|
582 |
+
|
583 |
+
def enable_deterministic(self):
|
584 |
+
for block in self.double_blocks:
|
585 |
+
block.enable_deterministic()
|
586 |
+
for block in self.single_blocks:
|
587 |
+
block.enable_deterministic()
|
588 |
+
|
589 |
+
def disable_deterministic(self):
|
590 |
+
for block in self.double_blocks:
|
591 |
+
block.disable_deterministic()
|
592 |
+
for block in self.single_blocks:
|
593 |
+
block.disable_deterministic()
|
594 |
+
|
595 |
+
def forward(
|
596 |
+
self,
|
597 |
+
x: torch.Tensor,
|
598 |
+
t: torch.Tensor, # Should be in range(0, 1000).
|
599 |
+
text_states: torch.Tensor = None,
|
600 |
+
text_mask: torch.Tensor = None, # Now we don't use it.
|
601 |
+
text_states_2: Optional[torch.Tensor] = None, # Text embedding for modulation.
|
602 |
+
freqs_cos: Optional[torch.Tensor] = None,
|
603 |
+
freqs_sin: Optional[torch.Tensor] = None,
|
604 |
+
guidance: torch.Tensor = None, # Guidance for modulation, should be cfg_scale x 1000.
|
605 |
+
return_dict: bool = True,
|
606 |
+
) -> Union[torch.Tensor, Dict[str, torch.Tensor]]:
|
607 |
+
out = {}
|
608 |
+
img = x
|
609 |
+
txt = text_states
|
610 |
+
_, _, ot, oh, ow = x.shape
|
611 |
+
tt, th, tw = (
|
612 |
+
ot // self.patch_size[0],
|
613 |
+
oh // self.patch_size[1],
|
614 |
+
ow // self.patch_size[2],
|
615 |
+
)
|
616 |
+
|
617 |
+
# Prepare modulation vectors.
|
618 |
+
vec = self.time_in(t)
|
619 |
+
|
620 |
+
# text modulation
|
621 |
+
vec = vec + self.vector_in(text_states_2)
|
622 |
+
|
623 |
+
# guidance modulation
|
624 |
+
if self.guidance_embed:
|
625 |
+
if guidance is None:
|
626 |
+
raise ValueError(
|
627 |
+
"Didn't get guidance strength for guidance distilled model."
|
628 |
+
)
|
629 |
+
|
630 |
+
# our timestep_embedding is merged into guidance_in(TimestepEmbedder)
|
631 |
+
vec = vec + self.guidance_in(guidance)
|
632 |
+
|
633 |
+
# Embed image and text.
|
634 |
+
img = self.img_in(img)
|
635 |
+
if self.text_projection == "linear":
|
636 |
+
txt = self.txt_in(txt)
|
637 |
+
elif self.text_projection == "single_refiner":
|
638 |
+
txt = self.txt_in(txt, t, text_mask if self.use_attention_mask else None)
|
639 |
+
else:
|
640 |
+
raise NotImplementedError(
|
641 |
+
f"Unsupported text_projection: {self.text_projection}"
|
642 |
+
)
|
643 |
+
|
644 |
+
txt_seq_len = txt.shape[1]
|
645 |
+
img_seq_len = img.shape[1]
|
646 |
+
|
647 |
+
# Compute cu_squlens and max_seqlen for flash attention
|
648 |
+
cu_seqlens_q = get_cu_seqlens(text_mask, img_seq_len)
|
649 |
+
cu_seqlens_kv = cu_seqlens_q
|
650 |
+
max_seqlen_q = img_seq_len + txt_seq_len
|
651 |
+
max_seqlen_kv = max_seqlen_q
|
652 |
+
|
653 |
+
freqs_cis = (freqs_cos, freqs_sin) if freqs_cos is not None else None
|
654 |
+
# --------------------- Pass through DiT blocks ------------------------
|
655 |
+
for _, block in enumerate(self.double_blocks):
|
656 |
+
double_block_args = [
|
657 |
+
img,
|
658 |
+
txt,
|
659 |
+
vec,
|
660 |
+
cu_seqlens_q,
|
661 |
+
cu_seqlens_kv,
|
662 |
+
max_seqlen_q,
|
663 |
+
max_seqlen_kv,
|
664 |
+
freqs_cis,
|
665 |
+
]
|
666 |
+
|
667 |
+
img, txt = block(*double_block_args)
|
668 |
+
|
669 |
+
# Merge txt and img to pass through single stream blocks.
|
670 |
+
x = torch.cat((img, txt), 1)
|
671 |
+
if len(self.single_blocks) > 0:
|
672 |
+
for _, block in enumerate(self.single_blocks):
|
673 |
+
single_block_args = [
|
674 |
+
x,
|
675 |
+
vec,
|
676 |
+
txt_seq_len,
|
677 |
+
cu_seqlens_q,
|
678 |
+
cu_seqlens_kv,
|
679 |
+
max_seqlen_q,
|
680 |
+
max_seqlen_kv,
|
681 |
+
(freqs_cos, freqs_sin),
|
682 |
+
]
|
683 |
+
|
684 |
+
x = block(*single_block_args)
|
685 |
+
|
686 |
+
img = x[:, :img_seq_len, ...]
|
687 |
+
|
688 |
+
# ---------------------------- Final layer ------------------------------
|
689 |
+
img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels)
|
690 |
+
|
691 |
+
img = self.unpatchify(img, tt, th, tw)
|
692 |
+
if return_dict:
|
693 |
+
out["x"] = img
|
694 |
+
return out
|
695 |
+
return img
|
696 |
+
|
697 |
+
def unpatchify(self, x, t, h, w):
|
698 |
+
"""
|
699 |
+
x: (N, T, patch_size**2 * C)
|
700 |
+
imgs: (N, H, W, C)
|
701 |
+
"""
|
702 |
+
c = self.unpatchify_channels
|
703 |
+
pt, ph, pw = self.patch_size
|
704 |
+
assert t * h * w == x.shape[1]
|
705 |
+
|
706 |
+
x = x.reshape(shape=(x.shape[0], t, h, w, c, pt, ph, pw))
|
707 |
+
x = torch.einsum("nthwcopq->nctohpwq", x)
|
708 |
+
imgs = x.reshape(shape=(x.shape[0], c, t * pt, h * ph, w * pw))
|
709 |
+
|
710 |
+
return imgs
|
711 |
+
|
712 |
+
def params_count(self):
|
713 |
+
counts = {
|
714 |
+
"double": sum(
|
715 |
+
[
|
716 |
+
sum(p.numel() for p in block.img_attn_qkv.parameters())
|
717 |
+
+ sum(p.numel() for p in block.img_attn_proj.parameters())
|
718 |
+
+ sum(p.numel() for p in block.img_mlp.parameters())
|
719 |
+
+ sum(p.numel() for p in block.txt_attn_qkv.parameters())
|
720 |
+
+ sum(p.numel() for p in block.txt_attn_proj.parameters())
|
721 |
+
+ sum(p.numel() for p in block.txt_mlp.parameters())
|
722 |
+
for block in self.double_blocks
|
723 |
+
]
|
724 |
+
),
|
725 |
+
"single": sum(
|
726 |
+
[
|
727 |
+
sum(p.numel() for p in block.linear1.parameters())
|
728 |
+
+ sum(p.numel() for p in block.linear2.parameters())
|
729 |
+
for block in self.single_blocks
|
730 |
+
]
|
731 |
+
),
|
732 |
+
"total": sum(p.numel() for p in self.parameters()),
|
733 |
+
}
|
734 |
+
counts["attn+mlp"] = counts["double"] + counts["single"]
|
735 |
+
return counts
|
736 |
+
|
737 |
+
|
738 |
+
#################################################################################
|
739 |
+
# HunyuanVideo Configs #
|
740 |
+
#################################################################################
|
741 |
+
|
742 |
+
HUNYUAN_VIDEO_CONFIG = {
|
743 |
+
"HYVideo-T/2": {
|
744 |
+
"mm_double_blocks_depth": 20,
|
745 |
+
"mm_single_blocks_depth": 40,
|
746 |
+
"rope_dim_list": [16, 56, 56],
|
747 |
+
"hidden_size": 3072,
|
748 |
+
"heads_num": 24,
|
749 |
+
"mlp_width_ratio": 4,
|
750 |
+
},
|
751 |
+
"HYVideo-T/2-cfgdistill": {
|
752 |
+
"mm_double_blocks_depth": 20,
|
753 |
+
"mm_single_blocks_depth": 40,
|
754 |
+
"rope_dim_list": [16, 56, 56],
|
755 |
+
"hidden_size": 3072,
|
756 |
+
"heads_num": 24,
|
757 |
+
"mlp_width_ratio": 4,
|
758 |
+
"guidance_embed": True,
|
759 |
+
},
|
760 |
+
}
|
hyvideo/modules/modulate_layers.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Callable
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
|
6 |
+
|
7 |
+
class ModulateDiT(nn.Module):
|
8 |
+
"""Modulation layer for DiT."""
|
9 |
+
def __init__(
|
10 |
+
self,
|
11 |
+
hidden_size: int,
|
12 |
+
factor: int,
|
13 |
+
act_layer: Callable,
|
14 |
+
dtype=None,
|
15 |
+
device=None,
|
16 |
+
):
|
17 |
+
factory_kwargs = {"dtype": dtype, "device": device}
|
18 |
+
super().__init__()
|
19 |
+
self.act = act_layer()
|
20 |
+
self.linear = nn.Linear(
|
21 |
+
hidden_size, factor * hidden_size, bias=True, **factory_kwargs
|
22 |
+
)
|
23 |
+
# Zero-initialize the modulation
|
24 |
+
nn.init.zeros_(self.linear.weight)
|
25 |
+
nn.init.zeros_(self.linear.bias)
|
26 |
+
|
27 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
28 |
+
return self.linear(self.act(x))
|
29 |
+
|
30 |
+
|
31 |
+
def modulate(x, shift=None, scale=None):
|
32 |
+
"""modulate by shift and scale
|
33 |
+
|
34 |
+
Args:
|
35 |
+
x (torch.Tensor): input tensor.
|
36 |
+
shift (torch.Tensor, optional): shift tensor. Defaults to None.
|
37 |
+
scale (torch.Tensor, optional): scale tensor. Defaults to None.
|
38 |
+
|
39 |
+
Returns:
|
40 |
+
torch.Tensor: the output tensor after modulate.
|
41 |
+
"""
|
42 |
+
if scale is None and shift is None:
|
43 |
+
return x
|
44 |
+
elif shift is None:
|
45 |
+
return x * (1 + scale.unsqueeze(1))
|
46 |
+
elif scale is None:
|
47 |
+
return x + shift.unsqueeze(1)
|
48 |
+
else:
|
49 |
+
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
|
50 |
+
|
51 |
+
|
52 |
+
def apply_gate(x, gate=None, tanh=False):
|
53 |
+
"""AI is creating summary for apply_gate
|
54 |
+
|
55 |
+
Args:
|
56 |
+
x (torch.Tensor): input tensor.
|
57 |
+
gate (torch.Tensor, optional): gate tensor. Defaults to None.
|
58 |
+
tanh (bool, optional): whether to use tanh function. Defaults to False.
|
59 |
+
|
60 |
+
Returns:
|
61 |
+
torch.Tensor: the output tensor after apply gate.
|
62 |
+
"""
|
63 |
+
if gate is None:
|
64 |
+
return x
|
65 |
+
if tanh:
|
66 |
+
return x * gate.unsqueeze(1).tanh()
|
67 |
+
else:
|
68 |
+
return x * gate.unsqueeze(1)
|
69 |
+
|
70 |
+
|
71 |
+
def ckpt_wrapper(module):
|
72 |
+
def ckpt_forward(*inputs):
|
73 |
+
outputs = module(*inputs)
|
74 |
+
return outputs
|
75 |
+
|
76 |
+
return ckpt_forward
|
hyvideo/modules/norm_layers.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
|
5 |
+
class RMSNorm(nn.Module):
|
6 |
+
def __init__(
|
7 |
+
self,
|
8 |
+
dim: int,
|
9 |
+
elementwise_affine=True,
|
10 |
+
eps: float = 1e-6,
|
11 |
+
device=None,
|
12 |
+
dtype=None,
|
13 |
+
):
|
14 |
+
"""
|
15 |
+
Initialize the RMSNorm normalization layer.
|
16 |
+
|
17 |
+
Args:
|
18 |
+
dim (int): The dimension of the input tensor.
|
19 |
+
eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6.
|
20 |
+
|
21 |
+
Attributes:
|
22 |
+
eps (float): A small value added to the denominator for numerical stability.
|
23 |
+
weight (nn.Parameter): Learnable scaling parameter.
|
24 |
+
|
25 |
+
"""
|
26 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
27 |
+
super().__init__()
|
28 |
+
self.eps = eps
|
29 |
+
if elementwise_affine:
|
30 |
+
self.weight = nn.Parameter(torch.ones(dim, **factory_kwargs))
|
31 |
+
|
32 |
+
def _norm(self, x):
|
33 |
+
"""
|
34 |
+
Apply the RMSNorm normalization to the input tensor.
|
35 |
+
|
36 |
+
Args:
|
37 |
+
x (torch.Tensor): The input tensor.
|
38 |
+
|
39 |
+
Returns:
|
40 |
+
torch.Tensor: The normalized tensor.
|
41 |
+
|
42 |
+
"""
|
43 |
+
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
44 |
+
|
45 |
+
def forward(self, x):
|
46 |
+
"""
|
47 |
+
Forward pass through the RMSNorm layer.
|
48 |
+
|
49 |
+
Args:
|
50 |
+
x (torch.Tensor): The input tensor.
|
51 |
+
|
52 |
+
Returns:
|
53 |
+
torch.Tensor: The output tensor after applying RMSNorm.
|
54 |
+
|
55 |
+
"""
|
56 |
+
output = self._norm(x.float()).type_as(x)
|
57 |
+
if hasattr(self, "weight"):
|
58 |
+
output = output * self.weight
|
59 |
+
return output
|
60 |
+
|
61 |
+
|
62 |
+
def get_norm_layer(norm_layer):
|
63 |
+
"""
|
64 |
+
Get the normalization layer.
|
65 |
+
|
66 |
+
Args:
|
67 |
+
norm_layer (str): The type of normalization layer.
|
68 |
+
|
69 |
+
Returns:
|
70 |
+
norm_layer (nn.Module): The normalization layer.
|
71 |
+
"""
|
72 |
+
if norm_layer == "layer":
|
73 |
+
return nn.LayerNorm
|
74 |
+
elif norm_layer == "rms":
|
75 |
+
return RMSNorm
|
76 |
+
else:
|
77 |
+
raise NotImplementedError(f"Norm layer {norm_layer} is not implemented")
|
hyvideo/modules/posemb_layers.py
ADDED
@@ -0,0 +1,310 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from typing import Union, Tuple, List
|
3 |
+
|
4 |
+
|
5 |
+
def _to_tuple(x, dim=2):
|
6 |
+
if isinstance(x, int):
|
7 |
+
return (x,) * dim
|
8 |
+
elif len(x) == dim:
|
9 |
+
return x
|
10 |
+
else:
|
11 |
+
raise ValueError(f"Expected length {dim} or int, but got {x}")
|
12 |
+
|
13 |
+
|
14 |
+
def get_meshgrid_nd(start, *args, dim=2):
|
15 |
+
"""
|
16 |
+
Get n-D meshgrid with start, stop and num.
|
17 |
+
|
18 |
+
Args:
|
19 |
+
start (int or tuple): If len(args) == 0, start is num; If len(args) == 1, start is start, args[0] is stop,
|
20 |
+
step is 1; If len(args) == 2, start is start, args[0] is stop, args[1] is num. For n-dim, start/stop/num
|
21 |
+
should be int or n-tuple. If n-tuple is provided, the meshgrid will be stacked following the dim order in
|
22 |
+
n-tuples.
|
23 |
+
*args: See above.
|
24 |
+
dim (int): Dimension of the meshgrid. Defaults to 2.
|
25 |
+
|
26 |
+
Returns:
|
27 |
+
grid (np.ndarray): [dim, ...]
|
28 |
+
"""
|
29 |
+
if len(args) == 0:
|
30 |
+
# start is grid_size
|
31 |
+
num = _to_tuple(start, dim=dim)
|
32 |
+
start = (0,) * dim
|
33 |
+
stop = num
|
34 |
+
elif len(args) == 1:
|
35 |
+
# start is start, args[0] is stop, step is 1
|
36 |
+
start = _to_tuple(start, dim=dim)
|
37 |
+
stop = _to_tuple(args[0], dim=dim)
|
38 |
+
num = [stop[i] - start[i] for i in range(dim)]
|
39 |
+
elif len(args) == 2:
|
40 |
+
# start is start, args[0] is stop, args[1] is num
|
41 |
+
start = _to_tuple(start, dim=dim) # Left-Top eg: 12,0
|
42 |
+
stop = _to_tuple(args[0], dim=dim) # Right-Bottom eg: 20,32
|
43 |
+
num = _to_tuple(args[1], dim=dim) # Target Size eg: 32,124
|
44 |
+
else:
|
45 |
+
raise ValueError(f"len(args) should be 0, 1 or 2, but got {len(args)}")
|
46 |
+
|
47 |
+
# PyTorch implement of np.linspace(start[i], stop[i], num[i], endpoint=False)
|
48 |
+
axis_grid = []
|
49 |
+
for i in range(dim):
|
50 |
+
a, b, n = start[i], stop[i], num[i]
|
51 |
+
g = torch.linspace(a, b, n + 1, dtype=torch.float32)[:n]
|
52 |
+
axis_grid.append(g)
|
53 |
+
grid = torch.meshgrid(*axis_grid, indexing="ij") # dim x [W, H, D]
|
54 |
+
grid = torch.stack(grid, dim=0) # [dim, W, H, D]
|
55 |
+
|
56 |
+
return grid
|
57 |
+
|
58 |
+
|
59 |
+
#################################################################################
|
60 |
+
# Rotary Positional Embedding Functions #
|
61 |
+
#################################################################################
|
62 |
+
# https://github.com/meta-llama/llama/blob/be327c427cc5e89cc1d3ab3d3fec4484df771245/llama/model.py#L80
|
63 |
+
|
64 |
+
|
65 |
+
def reshape_for_broadcast(
|
66 |
+
freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]],
|
67 |
+
x: torch.Tensor,
|
68 |
+
head_first=False,
|
69 |
+
):
|
70 |
+
"""
|
71 |
+
Reshape frequency tensor for broadcasting it with another tensor.
|
72 |
+
|
73 |
+
This function reshapes the frequency tensor to have the same shape as the target tensor 'x'
|
74 |
+
for the purpose of broadcasting the frequency tensor during element-wise operations.
|
75 |
+
|
76 |
+
Notes:
|
77 |
+
When using FlashMHAModified, head_first should be False.
|
78 |
+
When using Attention, head_first should be True.
|
79 |
+
|
80 |
+
Args:
|
81 |
+
freqs_cis (Union[torch.Tensor, Tuple[torch.Tensor]]): Frequency tensor to be reshaped.
|
82 |
+
x (torch.Tensor): Target tensor for broadcasting compatibility.
|
83 |
+
head_first (bool): head dimension first (except batch dim) or not.
|
84 |
+
|
85 |
+
Returns:
|
86 |
+
torch.Tensor: Reshaped frequency tensor.
|
87 |
+
|
88 |
+
Raises:
|
89 |
+
AssertionError: If the frequency tensor doesn't match the expected shape.
|
90 |
+
AssertionError: If the target tensor 'x' doesn't have the expected number of dimensions.
|
91 |
+
"""
|
92 |
+
ndim = x.ndim
|
93 |
+
assert 0 <= 1 < ndim
|
94 |
+
|
95 |
+
if isinstance(freqs_cis, tuple):
|
96 |
+
# freqs_cis: (cos, sin) in real space
|
97 |
+
if head_first:
|
98 |
+
assert freqs_cis[0].shape == (
|
99 |
+
x.shape[-2],
|
100 |
+
x.shape[-1],
|
101 |
+
), f"freqs_cis shape {freqs_cis[0].shape} does not match x shape {x.shape}"
|
102 |
+
shape = [
|
103 |
+
d if i == ndim - 2 or i == ndim - 1 else 1
|
104 |
+
for i, d in enumerate(x.shape)
|
105 |
+
]
|
106 |
+
else:
|
107 |
+
assert freqs_cis[0].shape == (
|
108 |
+
x.shape[1],
|
109 |
+
x.shape[-1],
|
110 |
+
), f"freqs_cis shape {freqs_cis[0].shape} does not match x shape {x.shape}"
|
111 |
+
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
|
112 |
+
return freqs_cis[0].view(*shape), freqs_cis[1].view(*shape)
|
113 |
+
else:
|
114 |
+
# freqs_cis: values in complex space
|
115 |
+
if head_first:
|
116 |
+
assert freqs_cis.shape == (
|
117 |
+
x.shape[-2],
|
118 |
+
x.shape[-1],
|
119 |
+
), f"freqs_cis shape {freqs_cis.shape} does not match x shape {x.shape}"
|
120 |
+
shape = [
|
121 |
+
d if i == ndim - 2 or i == ndim - 1 else 1
|
122 |
+
for i, d in enumerate(x.shape)
|
123 |
+
]
|
124 |
+
else:
|
125 |
+
assert freqs_cis.shape == (
|
126 |
+
x.shape[1],
|
127 |
+
x.shape[-1],
|
128 |
+
), f"freqs_cis shape {freqs_cis.shape} does not match x shape {x.shape}"
|
129 |
+
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
|
130 |
+
return freqs_cis.view(*shape)
|
131 |
+
|
132 |
+
|
133 |
+
def rotate_half(x):
|
134 |
+
x_real, x_imag = (
|
135 |
+
x.float().reshape(*x.shape[:-1], -1, 2).unbind(-1)
|
136 |
+
) # [B, S, H, D//2]
|
137 |
+
return torch.stack([-x_imag, x_real], dim=-1).flatten(3)
|
138 |
+
|
139 |
+
|
140 |
+
def apply_rotary_emb(
|
141 |
+
xq: torch.Tensor,
|
142 |
+
xk: torch.Tensor,
|
143 |
+
freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]],
|
144 |
+
head_first: bool = False,
|
145 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
146 |
+
"""
|
147 |
+
Apply rotary embeddings to input tensors using the given frequency tensor.
|
148 |
+
|
149 |
+
This function applies rotary embeddings to the given query 'xq' and key 'xk' tensors using the provided
|
150 |
+
frequency tensor 'freqs_cis'. The input tensors are reshaped as complex numbers, and the frequency tensor
|
151 |
+
is reshaped for broadcasting compatibility. The resulting tensors contain rotary embeddings and are
|
152 |
+
returned as real tensors.
|
153 |
+
|
154 |
+
Args:
|
155 |
+
xq (torch.Tensor): Query tensor to apply rotary embeddings. [B, S, H, D]
|
156 |
+
xk (torch.Tensor): Key tensor to apply rotary embeddings. [B, S, H, D]
|
157 |
+
freqs_cis (torch.Tensor or tuple): Precomputed frequency tensor for complex exponential.
|
158 |
+
head_first (bool): head dimension first (except batch dim) or not.
|
159 |
+
|
160 |
+
Returns:
|
161 |
+
Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings.
|
162 |
+
|
163 |
+
"""
|
164 |
+
xk_out = None
|
165 |
+
if isinstance(freqs_cis, tuple):
|
166 |
+
cos, sin = reshape_for_broadcast(freqs_cis, xq, head_first) # [S, D]
|
167 |
+
cos, sin = cos.to(xq.device), sin.to(xq.device)
|
168 |
+
# real * cos - imag * sin
|
169 |
+
# imag * cos + real * sin
|
170 |
+
xq_out = (xq.float() * cos + rotate_half(xq.float()) * sin).type_as(xq)
|
171 |
+
xk_out = (xk.float() * cos + rotate_half(xk.float()) * sin).type_as(xk)
|
172 |
+
else:
|
173 |
+
# view_as_complex will pack [..., D/2, 2](real) to [..., D/2](complex)
|
174 |
+
xq_ = torch.view_as_complex(
|
175 |
+
xq.float().reshape(*xq.shape[:-1], -1, 2)
|
176 |
+
) # [B, S, H, D//2]
|
177 |
+
freqs_cis = reshape_for_broadcast(freqs_cis, xq_, head_first).to(
|
178 |
+
xq.device
|
179 |
+
) # [S, D//2] --> [1, S, 1, D//2]
|
180 |
+
# (real, imag) * (cos, sin) = (real * cos - imag * sin, imag * cos + real * sin)
|
181 |
+
# view_as_real will expand [..., D/2](complex) to [..., D/2, 2](real)
|
182 |
+
xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3).type_as(xq)
|
183 |
+
xk_ = torch.view_as_complex(
|
184 |
+
xk.float().reshape(*xk.shape[:-1], -1, 2)
|
185 |
+
) # [B, S, H, D//2]
|
186 |
+
xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3).type_as(xk)
|
187 |
+
|
188 |
+
return xq_out, xk_out
|
189 |
+
|
190 |
+
|
191 |
+
def get_nd_rotary_pos_embed(
|
192 |
+
rope_dim_list,
|
193 |
+
start,
|
194 |
+
*args,
|
195 |
+
theta=10000.0,
|
196 |
+
use_real=False,
|
197 |
+
theta_rescale_factor: Union[float, List[float]] = 1.0,
|
198 |
+
interpolation_factor: Union[float, List[float]] = 1.0,
|
199 |
+
):
|
200 |
+
"""
|
201 |
+
This is a n-d version of precompute_freqs_cis, which is a RoPE for tokens with n-d structure.
|
202 |
+
|
203 |
+
Args:
|
204 |
+
rope_dim_list (list of int): Dimension of each rope. len(rope_dim_list) should equal to n.
|
205 |
+
sum(rope_dim_list) should equal to head_dim of attention layer.
|
206 |
+
start (int | tuple of int | list of int): If len(args) == 0, start is num; If len(args) == 1, start is start,
|
207 |
+
args[0] is stop, step is 1; If len(args) == 2, start is start, args[0] is stop, args[1] is num.
|
208 |
+
*args: See above.
|
209 |
+
theta (float): Scaling factor for frequency computation. Defaults to 10000.0.
|
210 |
+
use_real (bool): If True, return real part and imaginary part separately. Otherwise, return complex numbers.
|
211 |
+
Some libraries such as TensorRT does not support complex64 data type. So it is useful to provide a real
|
212 |
+
part and an imaginary part separately.
|
213 |
+
theta_rescale_factor (float): Rescale factor for theta. Defaults to 1.0.
|
214 |
+
|
215 |
+
Returns:
|
216 |
+
pos_embed (torch.Tensor): [HW, D/2]
|
217 |
+
"""
|
218 |
+
|
219 |
+
grid = get_meshgrid_nd(
|
220 |
+
start, *args, dim=len(rope_dim_list)
|
221 |
+
) # [3, W, H, D] / [2, W, H]
|
222 |
+
|
223 |
+
if isinstance(theta_rescale_factor, int) or isinstance(theta_rescale_factor, float):
|
224 |
+
theta_rescale_factor = [theta_rescale_factor] * len(rope_dim_list)
|
225 |
+
elif isinstance(theta_rescale_factor, list) and len(theta_rescale_factor) == 1:
|
226 |
+
theta_rescale_factor = [theta_rescale_factor[0]] * len(rope_dim_list)
|
227 |
+
assert len(theta_rescale_factor) == len(
|
228 |
+
rope_dim_list
|
229 |
+
), "len(theta_rescale_factor) should equal to len(rope_dim_list)"
|
230 |
+
|
231 |
+
if isinstance(interpolation_factor, int) or isinstance(interpolation_factor, float):
|
232 |
+
interpolation_factor = [interpolation_factor] * len(rope_dim_list)
|
233 |
+
elif isinstance(interpolation_factor, list) and len(interpolation_factor) == 1:
|
234 |
+
interpolation_factor = [interpolation_factor[0]] * len(rope_dim_list)
|
235 |
+
assert len(interpolation_factor) == len(
|
236 |
+
rope_dim_list
|
237 |
+
), "len(interpolation_factor) should equal to len(rope_dim_list)"
|
238 |
+
|
239 |
+
# use 1/ndim of dimensions to encode grid_axis
|
240 |
+
embs = []
|
241 |
+
for i in range(len(rope_dim_list)):
|
242 |
+
emb = get_1d_rotary_pos_embed(
|
243 |
+
rope_dim_list[i],
|
244 |
+
grid[i].reshape(-1),
|
245 |
+
theta,
|
246 |
+
use_real=use_real,
|
247 |
+
theta_rescale_factor=theta_rescale_factor[i],
|
248 |
+
interpolation_factor=interpolation_factor[i],
|
249 |
+
) # 2 x [WHD, rope_dim_list[i]]
|
250 |
+
embs.append(emb)
|
251 |
+
|
252 |
+
if use_real:
|
253 |
+
cos = torch.cat([emb[0] for emb in embs], dim=1) # (WHD, D/2)
|
254 |
+
sin = torch.cat([emb[1] for emb in embs], dim=1) # (WHD, D/2)
|
255 |
+
return cos, sin
|
256 |
+
else:
|
257 |
+
emb = torch.cat(embs, dim=1) # (WHD, D/2)
|
258 |
+
return emb
|
259 |
+
|
260 |
+
|
261 |
+
def get_1d_rotary_pos_embed(
|
262 |
+
dim: int,
|
263 |
+
pos: Union[torch.FloatTensor, int],
|
264 |
+
theta: float = 10000.0,
|
265 |
+
use_real: bool = False,
|
266 |
+
theta_rescale_factor: float = 1.0,
|
267 |
+
interpolation_factor: float = 1.0,
|
268 |
+
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
|
269 |
+
"""
|
270 |
+
Precompute the frequency tensor for complex exponential (cis) with given dimensions.
|
271 |
+
(Note: `cis` means `cos + i * sin`, where i is the imaginary unit.)
|
272 |
+
|
273 |
+
This function calculates a frequency tensor with complex exponential using the given dimension 'dim'
|
274 |
+
and the end index 'end'. The 'theta' parameter scales the frequencies.
|
275 |
+
The returned tensor contains complex values in complex64 data type.
|
276 |
+
|
277 |
+
Args:
|
278 |
+
dim (int): Dimension of the frequency tensor.
|
279 |
+
pos (int or torch.FloatTensor): Position indices for the frequency tensor. [S] or scalar
|
280 |
+
theta (float, optional): Scaling factor for frequency computation. Defaults to 10000.0.
|
281 |
+
use_real (bool, optional): If True, return real part and imaginary part separately.
|
282 |
+
Otherwise, return complex numbers.
|
283 |
+
theta_rescale_factor (float, optional): Rescale factor for theta. Defaults to 1.0.
|
284 |
+
|
285 |
+
Returns:
|
286 |
+
freqs_cis: Precomputed frequency tensor with complex exponential. [S, D/2]
|
287 |
+
freqs_cos, freqs_sin: Precomputed frequency tensor with real and imaginary parts separately. [S, D]
|
288 |
+
"""
|
289 |
+
if isinstance(pos, int):
|
290 |
+
pos = torch.arange(pos).float()
|
291 |
+
|
292 |
+
# proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning
|
293 |
+
# has some connection to NTK literature
|
294 |
+
if theta_rescale_factor != 1.0:
|
295 |
+
theta *= theta_rescale_factor ** (dim / (dim - 2))
|
296 |
+
|
297 |
+
freqs = 1.0 / (
|
298 |
+
theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)
|
299 |
+
) # [D/2]
|
300 |
+
# assert interpolation_factor == 1.0, f"interpolation_factor: {interpolation_factor}"
|
301 |
+
freqs = torch.outer(pos * interpolation_factor, freqs) # [S, D/2]
|
302 |
+
if use_real:
|
303 |
+
freqs_cos = freqs.cos().repeat_interleave(2, dim=1) # [S, D]
|
304 |
+
freqs_sin = freqs.sin().repeat_interleave(2, dim=1) # [S, D]
|
305 |
+
return freqs_cos, freqs_sin
|
306 |
+
else:
|
307 |
+
freqs_cis = torch.polar(
|
308 |
+
torch.ones_like(freqs), freqs
|
309 |
+
) # complex64 # [S, D/2]
|
310 |
+
return freqs_cis
|
hyvideo/modules/token_refiner.py
ADDED
@@ -0,0 +1,236 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional
|
2 |
+
|
3 |
+
from einops import rearrange
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
|
7 |
+
from .activation_layers import get_activation_layer
|
8 |
+
from .attenion import attention
|
9 |
+
from .norm_layers import get_norm_layer
|
10 |
+
from .embed_layers import TimestepEmbedder, TextProjection
|
11 |
+
from .attenion import attention
|
12 |
+
from .mlp_layers import MLP
|
13 |
+
from .modulate_layers import modulate, apply_gate
|
14 |
+
|
15 |
+
|
16 |
+
class IndividualTokenRefinerBlock(nn.Module):
|
17 |
+
def __init__(
|
18 |
+
self,
|
19 |
+
hidden_size,
|
20 |
+
heads_num,
|
21 |
+
mlp_width_ratio: str = 4.0,
|
22 |
+
mlp_drop_rate: float = 0.0,
|
23 |
+
act_type: str = "silu",
|
24 |
+
qk_norm: bool = False,
|
25 |
+
qk_norm_type: str = "layer",
|
26 |
+
qkv_bias: bool = True,
|
27 |
+
dtype: Optional[torch.dtype] = None,
|
28 |
+
device: Optional[torch.device] = None,
|
29 |
+
):
|
30 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
31 |
+
super().__init__()
|
32 |
+
self.heads_num = heads_num
|
33 |
+
head_dim = hidden_size // heads_num
|
34 |
+
mlp_hidden_dim = int(hidden_size * mlp_width_ratio)
|
35 |
+
|
36 |
+
self.norm1 = nn.LayerNorm(
|
37 |
+
hidden_size, elementwise_affine=True, eps=1e-6, **factory_kwargs
|
38 |
+
)
|
39 |
+
self.self_attn_qkv = nn.Linear(
|
40 |
+
hidden_size, hidden_size * 3, bias=qkv_bias, **factory_kwargs
|
41 |
+
)
|
42 |
+
qk_norm_layer = get_norm_layer(qk_norm_type)
|
43 |
+
self.self_attn_q_norm = (
|
44 |
+
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs)
|
45 |
+
if qk_norm
|
46 |
+
else nn.Identity()
|
47 |
+
)
|
48 |
+
self.self_attn_k_norm = (
|
49 |
+
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs)
|
50 |
+
if qk_norm
|
51 |
+
else nn.Identity()
|
52 |
+
)
|
53 |
+
self.self_attn_proj = nn.Linear(
|
54 |
+
hidden_size, hidden_size, bias=qkv_bias, **factory_kwargs
|
55 |
+
)
|
56 |
+
|
57 |
+
self.norm2 = nn.LayerNorm(
|
58 |
+
hidden_size, elementwise_affine=True, eps=1e-6, **factory_kwargs
|
59 |
+
)
|
60 |
+
act_layer = get_activation_layer(act_type)
|
61 |
+
self.mlp = MLP(
|
62 |
+
in_channels=hidden_size,
|
63 |
+
hidden_channels=mlp_hidden_dim,
|
64 |
+
act_layer=act_layer,
|
65 |
+
drop=mlp_drop_rate,
|
66 |
+
**factory_kwargs,
|
67 |
+
)
|
68 |
+
|
69 |
+
self.adaLN_modulation = nn.Sequential(
|
70 |
+
act_layer(),
|
71 |
+
nn.Linear(hidden_size, 2 * hidden_size, bias=True, **factory_kwargs),
|
72 |
+
)
|
73 |
+
# Zero-initialize the modulation
|
74 |
+
nn.init.zeros_(self.adaLN_modulation[1].weight)
|
75 |
+
nn.init.zeros_(self.adaLN_modulation[1].bias)
|
76 |
+
|
77 |
+
def forward(
|
78 |
+
self,
|
79 |
+
x: torch.Tensor,
|
80 |
+
c: torch.Tensor, # timestep_aware_representations + context_aware_representations
|
81 |
+
attn_mask: torch.Tensor = None,
|
82 |
+
):
|
83 |
+
gate_msa, gate_mlp = self.adaLN_modulation(c).chunk(2, dim=1)
|
84 |
+
|
85 |
+
norm_x = self.norm1(x)
|
86 |
+
qkv = self.self_attn_qkv(norm_x)
|
87 |
+
q, k, v = rearrange(qkv, "B L (K H D) -> K B L H D", K=3, H=self.heads_num)
|
88 |
+
# Apply QK-Norm if needed
|
89 |
+
q = self.self_attn_q_norm(q).to(v)
|
90 |
+
k = self.self_attn_k_norm(k).to(v)
|
91 |
+
|
92 |
+
# Self-Attention
|
93 |
+
attn = attention(q, k, v, mode="torch", attn_mask=attn_mask)
|
94 |
+
|
95 |
+
x = x + apply_gate(self.self_attn_proj(attn), gate_msa)
|
96 |
+
|
97 |
+
# FFN Layer
|
98 |
+
x = x + apply_gate(self.mlp(self.norm2(x)), gate_mlp)
|
99 |
+
|
100 |
+
return x
|
101 |
+
|
102 |
+
|
103 |
+
class IndividualTokenRefiner(nn.Module):
|
104 |
+
def __init__(
|
105 |
+
self,
|
106 |
+
hidden_size,
|
107 |
+
heads_num,
|
108 |
+
depth,
|
109 |
+
mlp_width_ratio: float = 4.0,
|
110 |
+
mlp_drop_rate: float = 0.0,
|
111 |
+
act_type: str = "silu",
|
112 |
+
qk_norm: bool = False,
|
113 |
+
qk_norm_type: str = "layer",
|
114 |
+
qkv_bias: bool = True,
|
115 |
+
dtype: Optional[torch.dtype] = None,
|
116 |
+
device: Optional[torch.device] = None,
|
117 |
+
):
|
118 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
119 |
+
super().__init__()
|
120 |
+
self.blocks = nn.ModuleList(
|
121 |
+
[
|
122 |
+
IndividualTokenRefinerBlock(
|
123 |
+
hidden_size=hidden_size,
|
124 |
+
heads_num=heads_num,
|
125 |
+
mlp_width_ratio=mlp_width_ratio,
|
126 |
+
mlp_drop_rate=mlp_drop_rate,
|
127 |
+
act_type=act_type,
|
128 |
+
qk_norm=qk_norm,
|
129 |
+
qk_norm_type=qk_norm_type,
|
130 |
+
qkv_bias=qkv_bias,
|
131 |
+
**factory_kwargs,
|
132 |
+
)
|
133 |
+
for _ in range(depth)
|
134 |
+
]
|
135 |
+
)
|
136 |
+
|
137 |
+
def forward(
|
138 |
+
self,
|
139 |
+
x: torch.Tensor,
|
140 |
+
c: torch.LongTensor,
|
141 |
+
mask: Optional[torch.Tensor] = None,
|
142 |
+
):
|
143 |
+
self_attn_mask = None
|
144 |
+
if mask is not None:
|
145 |
+
batch_size = mask.shape[0]
|
146 |
+
seq_len = mask.shape[1]
|
147 |
+
mask = mask.to(x.device)
|
148 |
+
# batch_size x 1 x seq_len x seq_len
|
149 |
+
self_attn_mask_1 = mask.view(batch_size, 1, 1, seq_len).repeat(
|
150 |
+
1, 1, seq_len, 1
|
151 |
+
)
|
152 |
+
# batch_size x 1 x seq_len x seq_len
|
153 |
+
self_attn_mask_2 = self_attn_mask_1.transpose(2, 3)
|
154 |
+
# batch_size x 1 x seq_len x seq_len, 1 for broadcasting of heads_num
|
155 |
+
self_attn_mask = (self_attn_mask_1 & self_attn_mask_2).bool()
|
156 |
+
# avoids self-attention weight being NaN for padding tokens
|
157 |
+
self_attn_mask[:, :, :, 0] = True
|
158 |
+
|
159 |
+
for block in self.blocks:
|
160 |
+
x = block(x, c, self_attn_mask)
|
161 |
+
return x
|
162 |
+
|
163 |
+
|
164 |
+
class SingleTokenRefiner(nn.Module):
|
165 |
+
"""
|
166 |
+
A single token refiner block for llm text embedding refine.
|
167 |
+
"""
|
168 |
+
def __init__(
|
169 |
+
self,
|
170 |
+
in_channels,
|
171 |
+
hidden_size,
|
172 |
+
heads_num,
|
173 |
+
depth,
|
174 |
+
mlp_width_ratio: float = 4.0,
|
175 |
+
mlp_drop_rate: float = 0.0,
|
176 |
+
act_type: str = "silu",
|
177 |
+
qk_norm: bool = False,
|
178 |
+
qk_norm_type: str = "layer",
|
179 |
+
qkv_bias: bool = True,
|
180 |
+
attn_mode: str = "torch",
|
181 |
+
dtype: Optional[torch.dtype] = None,
|
182 |
+
device: Optional[torch.device] = None,
|
183 |
+
):
|
184 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
185 |
+
super().__init__()
|
186 |
+
self.attn_mode = attn_mode
|
187 |
+
assert self.attn_mode == "torch", "Only support 'torch' mode for token refiner."
|
188 |
+
|
189 |
+
self.input_embedder = nn.Linear(
|
190 |
+
in_channels, hidden_size, bias=True, **factory_kwargs
|
191 |
+
)
|
192 |
+
|
193 |
+
act_layer = get_activation_layer(act_type)
|
194 |
+
# Build timestep embedding layer
|
195 |
+
self.t_embedder = TimestepEmbedder(hidden_size, act_layer, **factory_kwargs)
|
196 |
+
# Build context embedding layer
|
197 |
+
self.c_embedder = TextProjection(
|
198 |
+
in_channels, hidden_size, act_layer, **factory_kwargs
|
199 |
+
)
|
200 |
+
|
201 |
+
self.individual_token_refiner = IndividualTokenRefiner(
|
202 |
+
hidden_size=hidden_size,
|
203 |
+
heads_num=heads_num,
|
204 |
+
depth=depth,
|
205 |
+
mlp_width_ratio=mlp_width_ratio,
|
206 |
+
mlp_drop_rate=mlp_drop_rate,
|
207 |
+
act_type=act_type,
|
208 |
+
qk_norm=qk_norm,
|
209 |
+
qk_norm_type=qk_norm_type,
|
210 |
+
qkv_bias=qkv_bias,
|
211 |
+
**factory_kwargs,
|
212 |
+
)
|
213 |
+
|
214 |
+
def forward(
|
215 |
+
self,
|
216 |
+
x: torch.Tensor,
|
217 |
+
t: torch.LongTensor,
|
218 |
+
mask: Optional[torch.LongTensor] = None,
|
219 |
+
):
|
220 |
+
timestep_aware_representations = self.t_embedder(t)
|
221 |
+
|
222 |
+
if mask is None:
|
223 |
+
context_aware_representations = x.mean(dim=1)
|
224 |
+
else:
|
225 |
+
mask_float = mask.float().unsqueeze(-1) # [b, s1, 1]
|
226 |
+
context_aware_representations = (x * mask_float).sum(
|
227 |
+
dim=1
|
228 |
+
) / mask_float.sum(dim=1)
|
229 |
+
context_aware_representations = self.c_embedder(context_aware_representations)
|
230 |
+
c = timestep_aware_representations + context_aware_representations
|
231 |
+
|
232 |
+
x = self.input_embedder(x)
|
233 |
+
|
234 |
+
x = self.individual_token_refiner(x, c, mask)
|
235 |
+
|
236 |
+
return x
|
hyvideo/prompt_rewrite.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
normal_mode_prompt = """Normal mode - Video Recaption Task:
|
2 |
+
|
3 |
+
You are a large language model specialized in rewriting video descriptions. Your task is to modify the input description.
|
4 |
+
|
5 |
+
0. Preserve ALL information, including style words and technical terms.
|
6 |
+
|
7 |
+
1. If the input is in Chinese, translate the entire description to English.
|
8 |
+
|
9 |
+
2. If the input is just one or two words describing an object or person, provide a brief, simple description focusing on basic visual characteristics. Limit the description to 1-2 short sentences.
|
10 |
+
|
11 |
+
3. If the input does not include style, lighting, atmosphere, you can make reasonable associations.
|
12 |
+
|
13 |
+
4. Output ALL must be in English.
|
14 |
+
|
15 |
+
Given Input:
|
16 |
+
input: "{input}"
|
17 |
+
"""
|
18 |
+
|
19 |
+
|
20 |
+
master_mode_prompt = """Master mode - Video Recaption Task:
|
21 |
+
|
22 |
+
You are a large language model specialized in rewriting video descriptions. Your task is to modify the input description.
|
23 |
+
|
24 |
+
0. Preserve ALL information, including style words and technical terms.
|
25 |
+
|
26 |
+
1. If the input is in Chinese, translate the entire description to English.
|
27 |
+
|
28 |
+
2. If the input is just one or two words describing an object or person, provide a brief, simple description focusing on basic visual characteristics. Limit the description to 1-2 short sentences.
|
29 |
+
|
30 |
+
3. If the input does not include style, lighting, atmosphere, you can make reasonable associations.
|
31 |
+
|
32 |
+
4. Output ALL must be in English.
|
33 |
+
|
34 |
+
Given Input:
|
35 |
+
input: "{input}"
|
36 |
+
"""
|
37 |
+
|
38 |
+
def get_rewrite_prompt(ori_prompt, mode="Normal"):
|
39 |
+
if mode == "Normal":
|
40 |
+
prompt = normal_mode_prompt.format(input=ori_prompt)
|
41 |
+
elif mode == "Master":
|
42 |
+
prompt = master_mode_prompt.format(input=ori_prompt)
|
43 |
+
else:
|
44 |
+
raise Exception("Only supports Normal and Normal", mode)
|
45 |
+
return prompt
|
46 |
+
|
47 |
+
ori_prompt = "一只小狗在草地上奔跑。"
|
48 |
+
normal_prompt = get_rewrite_prompt(ori_prompt, mode="Normal")
|
49 |
+
master_prompt = get_rewrite_prompt(ori_prompt, mode="Master")
|
50 |
+
|
51 |
+
# Then you can use the normal_prompt or master_prompt to access the hunyuan-large rewrite model to get the final prompt.
|
hyvideo/text_encoder/__init__.py
ADDED
@@ -0,0 +1,357 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from typing import Optional, Tuple
|
3 |
+
from copy import deepcopy
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
from transformers import CLIPTextModel, CLIPTokenizer, AutoTokenizer, AutoModel
|
8 |
+
from transformers.utils import ModelOutput
|
9 |
+
|
10 |
+
from ..constants import TEXT_ENCODER_PATH, TOKENIZER_PATH
|
11 |
+
from ..constants import PRECISION_TO_TYPE
|
12 |
+
|
13 |
+
|
14 |
+
def use_default(value, default):
|
15 |
+
return value if value is not None else default
|
16 |
+
|
17 |
+
|
18 |
+
def load_text_encoder(
|
19 |
+
text_encoder_type,
|
20 |
+
text_encoder_precision=None,
|
21 |
+
text_encoder_path=None,
|
22 |
+
logger=None,
|
23 |
+
device=None,
|
24 |
+
):
|
25 |
+
if text_encoder_path is None:
|
26 |
+
text_encoder_path = TEXT_ENCODER_PATH[text_encoder_type]
|
27 |
+
if logger is not None:
|
28 |
+
logger.info(
|
29 |
+
f"Loading text encoder model ({text_encoder_type}) from: {text_encoder_path}"
|
30 |
+
)
|
31 |
+
|
32 |
+
if text_encoder_type == "clipL":
|
33 |
+
text_encoder = CLIPTextModel.from_pretrained(text_encoder_path)
|
34 |
+
text_encoder.final_layer_norm = text_encoder.text_model.final_layer_norm
|
35 |
+
elif text_encoder_type == "llm":
|
36 |
+
text_encoder = AutoModel.from_pretrained(
|
37 |
+
text_encoder_path, low_cpu_mem_usage=True
|
38 |
+
)
|
39 |
+
text_encoder.final_layer_norm = text_encoder.norm
|
40 |
+
else:
|
41 |
+
raise ValueError(f"Unsupported text encoder type: {text_encoder_type}")
|
42 |
+
# from_pretrained will ensure that the model is in eval mode.
|
43 |
+
|
44 |
+
if text_encoder_precision is not None:
|
45 |
+
text_encoder = text_encoder.to(dtype=PRECISION_TO_TYPE[text_encoder_precision])
|
46 |
+
|
47 |
+
text_encoder.requires_grad_(False)
|
48 |
+
|
49 |
+
if logger is not None:
|
50 |
+
logger.info(f"Text encoder to dtype: {text_encoder.dtype}")
|
51 |
+
|
52 |
+
if device is not None:
|
53 |
+
text_encoder = text_encoder.to(device)
|
54 |
+
|
55 |
+
return text_encoder, text_encoder_path
|
56 |
+
|
57 |
+
|
58 |
+
def load_tokenizer(
|
59 |
+
tokenizer_type, tokenizer_path=None, padding_side="right", logger=None
|
60 |
+
):
|
61 |
+
if tokenizer_path is None:
|
62 |
+
tokenizer_path = TOKENIZER_PATH[tokenizer_type]
|
63 |
+
if logger is not None:
|
64 |
+
logger.info(f"Loading tokenizer ({tokenizer_type}) from: {tokenizer_path}")
|
65 |
+
|
66 |
+
if tokenizer_type == "clipL":
|
67 |
+
tokenizer = CLIPTokenizer.from_pretrained(tokenizer_path, max_length=77)
|
68 |
+
elif tokenizer_type == "llm":
|
69 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
70 |
+
tokenizer_path, padding_side=padding_side
|
71 |
+
)
|
72 |
+
else:
|
73 |
+
raise ValueError(f"Unsupported tokenizer type: {tokenizer_type}")
|
74 |
+
|
75 |
+
return tokenizer, tokenizer_path
|
76 |
+
|
77 |
+
|
78 |
+
@dataclass
|
79 |
+
class TextEncoderModelOutput(ModelOutput):
|
80 |
+
"""
|
81 |
+
Base class for model's outputs that also contains a pooling of the last hidden states.
|
82 |
+
|
83 |
+
Args:
|
84 |
+
hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
85 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
86 |
+
attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
87 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:
|
88 |
+
hidden_states_list (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed):
|
89 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
90 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
91 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
92 |
+
text_outputs (`list`, *optional*, returned when `return_texts=True` is passed):
|
93 |
+
List of decoded texts.
|
94 |
+
"""
|
95 |
+
|
96 |
+
hidden_state: torch.FloatTensor = None
|
97 |
+
attention_mask: Optional[torch.LongTensor] = None
|
98 |
+
hidden_states_list: Optional[Tuple[torch.FloatTensor, ...]] = None
|
99 |
+
text_outputs: Optional[list] = None
|
100 |
+
|
101 |
+
|
102 |
+
class TextEncoder(nn.Module):
|
103 |
+
def __init__(
|
104 |
+
self,
|
105 |
+
text_encoder_type: str,
|
106 |
+
max_length: int,
|
107 |
+
text_encoder_precision: Optional[str] = None,
|
108 |
+
text_encoder_path: Optional[str] = None,
|
109 |
+
tokenizer_type: Optional[str] = None,
|
110 |
+
tokenizer_path: Optional[str] = None,
|
111 |
+
output_key: Optional[str] = None,
|
112 |
+
use_attention_mask: bool = True,
|
113 |
+
input_max_length: Optional[int] = None,
|
114 |
+
prompt_template: Optional[dict] = None,
|
115 |
+
prompt_template_video: Optional[dict] = None,
|
116 |
+
hidden_state_skip_layer: Optional[int] = None,
|
117 |
+
apply_final_norm: bool = False,
|
118 |
+
reproduce: bool = False,
|
119 |
+
logger=None,
|
120 |
+
device=None,
|
121 |
+
):
|
122 |
+
super().__init__()
|
123 |
+
self.text_encoder_type = text_encoder_type
|
124 |
+
self.max_length = max_length
|
125 |
+
self.precision = text_encoder_precision
|
126 |
+
self.model_path = text_encoder_path
|
127 |
+
self.tokenizer_type = (
|
128 |
+
tokenizer_type if tokenizer_type is not None else text_encoder_type
|
129 |
+
)
|
130 |
+
self.tokenizer_path = (
|
131 |
+
tokenizer_path if tokenizer_path is not None else text_encoder_path
|
132 |
+
)
|
133 |
+
self.use_attention_mask = use_attention_mask
|
134 |
+
if prompt_template_video is not None:
|
135 |
+
assert (
|
136 |
+
use_attention_mask is True
|
137 |
+
), "Attention mask is True required when training videos."
|
138 |
+
self.input_max_length = (
|
139 |
+
input_max_length if input_max_length is not None else max_length
|
140 |
+
)
|
141 |
+
self.prompt_template = prompt_template
|
142 |
+
self.prompt_template_video = prompt_template_video
|
143 |
+
self.hidden_state_skip_layer = hidden_state_skip_layer
|
144 |
+
self.apply_final_norm = apply_final_norm
|
145 |
+
self.reproduce = reproduce
|
146 |
+
self.logger = logger
|
147 |
+
|
148 |
+
self.use_template = self.prompt_template is not None
|
149 |
+
if self.use_template:
|
150 |
+
assert (
|
151 |
+
isinstance(self.prompt_template, dict)
|
152 |
+
and "template" in self.prompt_template
|
153 |
+
), f"`prompt_template` must be a dictionary with a key 'template', got {self.prompt_template}"
|
154 |
+
assert "{}" in str(self.prompt_template["template"]), (
|
155 |
+
"`prompt_template['template']` must contain a placeholder `{}` for the input text, "
|
156 |
+
f"got {self.prompt_template['template']}"
|
157 |
+
)
|
158 |
+
|
159 |
+
self.use_video_template = self.prompt_template_video is not None
|
160 |
+
if self.use_video_template:
|
161 |
+
if self.prompt_template_video is not None:
|
162 |
+
assert (
|
163 |
+
isinstance(self.prompt_template_video, dict)
|
164 |
+
and "template" in self.prompt_template_video
|
165 |
+
), f"`prompt_template_video` must be a dictionary with a key 'template', got {self.prompt_template_video}"
|
166 |
+
assert "{}" in str(self.prompt_template_video["template"]), (
|
167 |
+
"`prompt_template_video['template']` must contain a placeholder `{}` for the input text, "
|
168 |
+
f"got {self.prompt_template_video['template']}"
|
169 |
+
)
|
170 |
+
|
171 |
+
if "t5" in text_encoder_type:
|
172 |
+
self.output_key = output_key or "last_hidden_state"
|
173 |
+
elif "clip" in text_encoder_type:
|
174 |
+
self.output_key = output_key or "pooler_output"
|
175 |
+
elif "llm" in text_encoder_type or "glm" in text_encoder_type:
|
176 |
+
self.output_key = output_key or "last_hidden_state"
|
177 |
+
else:
|
178 |
+
raise ValueError(f"Unsupported text encoder type: {text_encoder_type}")
|
179 |
+
|
180 |
+
self.model, self.model_path = load_text_encoder(
|
181 |
+
text_encoder_type=self.text_encoder_type,
|
182 |
+
text_encoder_precision=self.precision,
|
183 |
+
text_encoder_path=self.model_path,
|
184 |
+
logger=self.logger,
|
185 |
+
device=device,
|
186 |
+
)
|
187 |
+
self.dtype = self.model.dtype
|
188 |
+
self.device = self.model.device
|
189 |
+
|
190 |
+
self.tokenizer, self.tokenizer_path = load_tokenizer(
|
191 |
+
tokenizer_type=self.tokenizer_type,
|
192 |
+
tokenizer_path=self.tokenizer_path,
|
193 |
+
padding_side="right",
|
194 |
+
logger=self.logger,
|
195 |
+
)
|
196 |
+
|
197 |
+
def __repr__(self):
|
198 |
+
return f"{self.text_encoder_type} ({self.precision} - {self.model_path})"
|
199 |
+
|
200 |
+
@staticmethod
|
201 |
+
def apply_text_to_template(text, template, prevent_empty_text=True):
|
202 |
+
"""
|
203 |
+
Apply text to template.
|
204 |
+
|
205 |
+
Args:
|
206 |
+
text (str): Input text.
|
207 |
+
template (str or list): Template string or list of chat conversation.
|
208 |
+
prevent_empty_text (bool): If Ture, we will prevent the user text from being empty
|
209 |
+
by adding a space. Defaults to True.
|
210 |
+
"""
|
211 |
+
if isinstance(template, str):
|
212 |
+
# Will send string to tokenizer. Used for llm
|
213 |
+
return template.format(text)
|
214 |
+
else:
|
215 |
+
raise TypeError(f"Unsupported template type: {type(template)}")
|
216 |
+
|
217 |
+
def text2tokens(self, text, data_type="image"):
|
218 |
+
"""
|
219 |
+
Tokenize the input text.
|
220 |
+
|
221 |
+
Args:
|
222 |
+
text (str or list): Input text.
|
223 |
+
"""
|
224 |
+
tokenize_input_type = "str"
|
225 |
+
if self.use_template:
|
226 |
+
if data_type == "image":
|
227 |
+
prompt_template = self.prompt_template["template"]
|
228 |
+
elif data_type == "video":
|
229 |
+
prompt_template = self.prompt_template_video["template"]
|
230 |
+
else:
|
231 |
+
raise ValueError(f"Unsupported data type: {data_type}")
|
232 |
+
if isinstance(text, (list, tuple)):
|
233 |
+
text = [
|
234 |
+
self.apply_text_to_template(one_text, prompt_template)
|
235 |
+
for one_text in text
|
236 |
+
]
|
237 |
+
if isinstance(text[0], list):
|
238 |
+
tokenize_input_type = "list"
|
239 |
+
elif isinstance(text, str):
|
240 |
+
text = self.apply_text_to_template(text, prompt_template)
|
241 |
+
if isinstance(text, list):
|
242 |
+
tokenize_input_type = "list"
|
243 |
+
else:
|
244 |
+
raise TypeError(f"Unsupported text type: {type(text)}")
|
245 |
+
|
246 |
+
kwargs = dict(
|
247 |
+
truncation=True,
|
248 |
+
max_length=self.max_length,
|
249 |
+
padding="max_length",
|
250 |
+
return_tensors="pt",
|
251 |
+
)
|
252 |
+
if tokenize_input_type == "str":
|
253 |
+
return self.tokenizer(
|
254 |
+
text,
|
255 |
+
return_length=False,
|
256 |
+
return_overflowing_tokens=False,
|
257 |
+
return_attention_mask=True,
|
258 |
+
**kwargs,
|
259 |
+
)
|
260 |
+
elif tokenize_input_type == "list":
|
261 |
+
return self.tokenizer.apply_chat_template(
|
262 |
+
text,
|
263 |
+
add_generation_prompt=True,
|
264 |
+
tokenize=True,
|
265 |
+
return_dict=True,
|
266 |
+
**kwargs,
|
267 |
+
)
|
268 |
+
else:
|
269 |
+
raise ValueError(f"Unsupported tokenize_input_type: {tokenize_input_type}")
|
270 |
+
|
271 |
+
def encode(
|
272 |
+
self,
|
273 |
+
batch_encoding,
|
274 |
+
use_attention_mask=None,
|
275 |
+
output_hidden_states=False,
|
276 |
+
do_sample=None,
|
277 |
+
hidden_state_skip_layer=None,
|
278 |
+
return_texts=False,
|
279 |
+
data_type="image",
|
280 |
+
device=None,
|
281 |
+
):
|
282 |
+
"""
|
283 |
+
Args:
|
284 |
+
batch_encoding (dict): Batch encoding from tokenizer.
|
285 |
+
use_attention_mask (bool): Whether to use attention mask. If None, use self.use_attention_mask.
|
286 |
+
Defaults to None.
|
287 |
+
output_hidden_states (bool): Whether to output hidden states. If False, return the value of
|
288 |
+
self.output_key. If True, return the entire output. If set self.hidden_state_skip_layer,
|
289 |
+
output_hidden_states will be set True. Defaults to False.
|
290 |
+
do_sample (bool): Whether to sample from the model. Used for Decoder-Only LLMs. Defaults to None.
|
291 |
+
When self.produce is False, do_sample is set to True by default.
|
292 |
+
hidden_state_skip_layer (int): Number of hidden states to hidden_state_skip_layer. 0 means the last layer.
|
293 |
+
If None, self.output_key will be used. Defaults to None.
|
294 |
+
return_texts (bool): Whether to return the decoded texts. Defaults to False.
|
295 |
+
"""
|
296 |
+
device = self.model.device if device is None else device
|
297 |
+
use_attention_mask = use_default(use_attention_mask, self.use_attention_mask)
|
298 |
+
hidden_state_skip_layer = use_default(
|
299 |
+
hidden_state_skip_layer, self.hidden_state_skip_layer
|
300 |
+
)
|
301 |
+
do_sample = use_default(do_sample, not self.reproduce)
|
302 |
+
attention_mask = (
|
303 |
+
batch_encoding["attention_mask"].to(device) if use_attention_mask else None
|
304 |
+
)
|
305 |
+
outputs = self.model(
|
306 |
+
input_ids=batch_encoding["input_ids"].to(device),
|
307 |
+
attention_mask=attention_mask,
|
308 |
+
output_hidden_states=output_hidden_states
|
309 |
+
or hidden_state_skip_layer is not None,
|
310 |
+
)
|
311 |
+
if hidden_state_skip_layer is not None:
|
312 |
+
last_hidden_state = outputs.hidden_states[-(hidden_state_skip_layer + 1)]
|
313 |
+
# Real last hidden state already has layer norm applied. So here we only apply it
|
314 |
+
# for intermediate layers.
|
315 |
+
if hidden_state_skip_layer > 0 and self.apply_final_norm:
|
316 |
+
last_hidden_state = self.model.final_layer_norm(last_hidden_state)
|
317 |
+
else:
|
318 |
+
last_hidden_state = outputs[self.output_key]
|
319 |
+
|
320 |
+
# Remove hidden states of instruction tokens, only keep prompt tokens.
|
321 |
+
if self.use_template:
|
322 |
+
if data_type == "image":
|
323 |
+
crop_start = self.prompt_template.get("crop_start", -1)
|
324 |
+
elif data_type == "video":
|
325 |
+
crop_start = self.prompt_template_video.get("crop_start", -1)
|
326 |
+
else:
|
327 |
+
raise ValueError(f"Unsupported data type: {data_type}")
|
328 |
+
if crop_start > 0:
|
329 |
+
last_hidden_state = last_hidden_state[:, crop_start:]
|
330 |
+
attention_mask = (
|
331 |
+
attention_mask[:, crop_start:] if use_attention_mask else None
|
332 |
+
)
|
333 |
+
|
334 |
+
if output_hidden_states:
|
335 |
+
return TextEncoderModelOutput(
|
336 |
+
last_hidden_state, attention_mask, outputs.hidden_states
|
337 |
+
)
|
338 |
+
return TextEncoderModelOutput(last_hidden_state, attention_mask)
|
339 |
+
|
340 |
+
def forward(
|
341 |
+
self,
|
342 |
+
text,
|
343 |
+
use_attention_mask=None,
|
344 |
+
output_hidden_states=False,
|
345 |
+
do_sample=False,
|
346 |
+
hidden_state_skip_layer=None,
|
347 |
+
return_texts=False,
|
348 |
+
):
|
349 |
+
batch_encoding = self.text2tokens(text)
|
350 |
+
return self.encode(
|
351 |
+
batch_encoding,
|
352 |
+
use_attention_mask=use_attention_mask,
|
353 |
+
output_hidden_states=output_hidden_states,
|
354 |
+
do_sample=do_sample,
|
355 |
+
hidden_state_skip_layer=hidden_state_skip_layer,
|
356 |
+
return_texts=return_texts,
|
357 |
+
)
|
hyvideo/utils/__init__.py
ADDED
File without changes
|
hyvideo/utils/data_utils.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import math
|
3 |
+
|
4 |
+
|
5 |
+
def align_to(value, alignment):
|
6 |
+
"""align hight, width according to alignment
|
7 |
+
|
8 |
+
Args:
|
9 |
+
value (int): height or width
|
10 |
+
alignment (int): target alignment factor
|
11 |
+
|
12 |
+
Returns:
|
13 |
+
int: the aligned value
|
14 |
+
"""
|
15 |
+
return int(math.ceil(value / alignment) * alignment)
|
hyvideo/utils/file_utils.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from pathlib import Path
|
3 |
+
from einops import rearrange
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torchvision
|
7 |
+
import numpy as np
|
8 |
+
import imageio
|
9 |
+
|
10 |
+
CODE_SUFFIXES = {
|
11 |
+
".py", # Python codes
|
12 |
+
".sh", # Shell scripts
|
13 |
+
".yaml",
|
14 |
+
".yml", # Configuration files
|
15 |
+
}
|
16 |
+
|
17 |
+
|
18 |
+
def safe_dir(path):
|
19 |
+
"""
|
20 |
+
Create a directory (or the parent directory of a file) if it does not exist.
|
21 |
+
|
22 |
+
Args:
|
23 |
+
path (str or Path): Path to the directory.
|
24 |
+
|
25 |
+
Returns:
|
26 |
+
path (Path): Path object of the directory.
|
27 |
+
"""
|
28 |
+
path = Path(path)
|
29 |
+
path.mkdir(exist_ok=True, parents=True)
|
30 |
+
return path
|
31 |
+
|
32 |
+
|
33 |
+
def safe_file(path):
|
34 |
+
"""
|
35 |
+
Create the parent directory of a file if it does not exist.
|
36 |
+
|
37 |
+
Args:
|
38 |
+
path (str or Path): Path to the file.
|
39 |
+
|
40 |
+
Returns:
|
41 |
+
path (Path): Path object of the file.
|
42 |
+
"""
|
43 |
+
path = Path(path)
|
44 |
+
path.parent.mkdir(exist_ok=True, parents=True)
|
45 |
+
return path
|
46 |
+
|
47 |
+
def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=1, fps=24):
|
48 |
+
"""save videos by video tensor
|
49 |
+
copy from https://github.com/guoyww/AnimateDiff/blob/e92bd5671ba62c0d774a32951453e328018b7c5b/animatediff/utils/util.py#L61
|
50 |
+
|
51 |
+
Args:
|
52 |
+
videos (torch.Tensor): video tensor predicted by the model
|
53 |
+
path (str): path to save video
|
54 |
+
rescale (bool, optional): rescale the video tensor from [-1, 1] to . Defaults to False.
|
55 |
+
n_rows (int, optional): Defaults to 1.
|
56 |
+
fps (int, optional): video save fps. Defaults to 8.
|
57 |
+
"""
|
58 |
+
videos = rearrange(videos, "b c t h w -> t b c h w")
|
59 |
+
outputs = []
|
60 |
+
for x in videos:
|
61 |
+
x = torchvision.utils.make_grid(x, nrow=n_rows)
|
62 |
+
x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
|
63 |
+
if rescale:
|
64 |
+
x = (x + 1.0) / 2.0 # -1,1 -> 0,1
|
65 |
+
x = torch.clamp(x, 0, 1)
|
66 |
+
x = (x * 255).numpy().astype(np.uint8)
|
67 |
+
outputs.append(x)
|
68 |
+
|
69 |
+
os.makedirs(os.path.dirname(path), exist_ok=True)
|
70 |
+
imageio.mimsave(path, outputs, fps=fps)
|
hyvideo/utils/helpers.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import collections.abc
|
2 |
+
|
3 |
+
from itertools import repeat
|
4 |
+
|
5 |
+
|
6 |
+
def _ntuple(n):
|
7 |
+
def parse(x):
|
8 |
+
if isinstance(x, collections.abc.Iterable) and not isinstance(x, str):
|
9 |
+
x = tuple(x)
|
10 |
+
if len(x) == 1:
|
11 |
+
x = tuple(repeat(x[0], n))
|
12 |
+
return x
|
13 |
+
return tuple(repeat(x, n))
|
14 |
+
return parse
|
15 |
+
|
16 |
+
|
17 |
+
to_1tuple = _ntuple(1)
|
18 |
+
to_2tuple = _ntuple(2)
|
19 |
+
to_3tuple = _ntuple(3)
|
20 |
+
to_4tuple = _ntuple(4)
|
21 |
+
|
22 |
+
|
23 |
+
def as_tuple(x):
|
24 |
+
if isinstance(x, collections.abc.Iterable) and not isinstance(x, str):
|
25 |
+
return tuple(x)
|
26 |
+
if x is None or isinstance(x, (int, float, str)):
|
27 |
+
return (x,)
|
28 |
+
else:
|
29 |
+
raise ValueError(f"Unknown type {type(x)}")
|
30 |
+
|
31 |
+
|
32 |
+
def as_list_of_2tuple(x):
|
33 |
+
x = as_tuple(x)
|
34 |
+
if len(x) == 1:
|
35 |
+
x = (x[0], x[0])
|
36 |
+
assert len(x) % 2 == 0, f"Expect even length, got {len(x)}."
|
37 |
+
lst = []
|
38 |
+
for i in range(0, len(x), 2):
|
39 |
+
lst.append((x[i], x[i + 1]))
|
40 |
+
return lst
|
hyvideo/utils/preprocess_text_encoder_tokenizer_utils.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import torch
|
3 |
+
from transformers import (
|
4 |
+
AutoProcessor,
|
5 |
+
LlavaForConditionalGeneration,
|
6 |
+
)
|
7 |
+
|
8 |
+
|
9 |
+
def preprocess_text_encoder_tokenizer(args):
|
10 |
+
|
11 |
+
processor = AutoProcessor.from_pretrained(args.input_dir)
|
12 |
+
model = LlavaForConditionalGeneration.from_pretrained(
|
13 |
+
args.input_dir,
|
14 |
+
torch_dtype=torch.float16,
|
15 |
+
low_cpu_mem_usage=True,
|
16 |
+
).to(0)
|
17 |
+
|
18 |
+
model.language_model.save_pretrained(
|
19 |
+
f"{args.output_dir}"
|
20 |
+
)
|
21 |
+
processor.tokenizer.save_pretrained(
|
22 |
+
f"{args.output_dir}"
|
23 |
+
)
|
24 |
+
|
25 |
+
if __name__ == "__main__":
|
26 |
+
|
27 |
+
parser = argparse.ArgumentParser()
|
28 |
+
parser.add_argument(
|
29 |
+
"--input_dir",
|
30 |
+
type=str,
|
31 |
+
required=True,
|
32 |
+
help="The path to the llava-llama-3-8b-v1_1-transformers.",
|
33 |
+
)
|
34 |
+
parser.add_argument(
|
35 |
+
"--output_dir",
|
36 |
+
type=str,
|
37 |
+
default="",
|
38 |
+
help="The output path of the llava-llama-3-8b-text-encoder-tokenizer."
|
39 |
+
"if '', the parent dir of output will be the same as input dir.",
|
40 |
+
)
|
41 |
+
args = parser.parse_args()
|
42 |
+
|
43 |
+
if len(args.output_dir) == 0:
|
44 |
+
args.output_dir = "/".join(args.input_dir.split("/")[:-1])
|
45 |
+
|
46 |
+
preprocess_text_encoder_tokenizer(args)
|
hyvideo/vae/__init__.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
|
3 |
+
import torch
|
4 |
+
|
5 |
+
from .autoencoder_kl_causal_3d import AutoencoderKLCausal3D
|
6 |
+
from ..constants import VAE_PATH, PRECISION_TO_TYPE
|
7 |
+
|
8 |
+
def load_vae(vae_type: str="884-16c-hy",
|
9 |
+
vae_precision: str=None,
|
10 |
+
sample_size: tuple=None,
|
11 |
+
vae_path: str=None,
|
12 |
+
logger=None,
|
13 |
+
device=None
|
14 |
+
):
|
15 |
+
"""the fucntion to load the 3D VAE model
|
16 |
+
|
17 |
+
Args:
|
18 |
+
vae_type (str): the type of the 3D VAE model. Defaults to "884-16c-hy".
|
19 |
+
vae_precision (str, optional): the precision to load vae. Defaults to None.
|
20 |
+
sample_size (tuple, optional): the tiling size. Defaults to None.
|
21 |
+
vae_path (str, optional): the path to vae. Defaults to None.
|
22 |
+
logger (_type_, optional): logger. Defaults to None.
|
23 |
+
device (_type_, optional): device to load vae. Defaults to None.
|
24 |
+
"""
|
25 |
+
if vae_path is None:
|
26 |
+
vae_path = VAE_PATH[vae_type]
|
27 |
+
|
28 |
+
if logger is not None:
|
29 |
+
logger.info(f"Loading 3D VAE model ({vae_type}) from: {vae_path}")
|
30 |
+
config = AutoencoderKLCausal3D.load_config(vae_path)
|
31 |
+
if sample_size:
|
32 |
+
vae = AutoencoderKLCausal3D.from_config(config, sample_size=sample_size)
|
33 |
+
else:
|
34 |
+
vae = AutoencoderKLCausal3D.from_config(config)
|
35 |
+
|
36 |
+
vae_ckpt = Path(vae_path) / "pytorch_model.pt"
|
37 |
+
assert vae_ckpt.exists(), f"VAE checkpoint not found: {vae_ckpt}"
|
38 |
+
|
39 |
+
ckpt = torch.load(vae_ckpt, map_location=vae.device)
|
40 |
+
if "state_dict" in ckpt:
|
41 |
+
ckpt = ckpt["state_dict"]
|
42 |
+
if any(k.startswith("vae.") for k in ckpt.keys()):
|
43 |
+
ckpt = {k.replace("vae.", ""): v for k, v in ckpt.items() if k.startswith("vae.")}
|
44 |
+
vae.load_state_dict(ckpt)
|
45 |
+
|
46 |
+
spatial_compression_ratio = vae.config.spatial_compression_ratio
|
47 |
+
time_compression_ratio = vae.config.time_compression_ratio
|
48 |
+
|
49 |
+
if vae_precision is not None:
|
50 |
+
vae = vae.to(dtype=PRECISION_TO_TYPE[vae_precision])
|
51 |
+
|
52 |
+
vae.requires_grad_(False)
|
53 |
+
|
54 |
+
if logger is not None:
|
55 |
+
logger.info(f"VAE to dtype: {vae.dtype}")
|
56 |
+
|
57 |
+
if device is not None:
|
58 |
+
vae = vae.to(device)
|
59 |
+
|
60 |
+
vae.eval()
|
61 |
+
|
62 |
+
return vae, vae_path, spatial_compression_ratio, time_compression_ratio
|
hyvideo/vae/autoencoder_kl_causal_3d.py
ADDED
@@ -0,0 +1,603 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# ==============================================================================
|
15 |
+
#
|
16 |
+
# Modified from diffusers==0.29.2
|
17 |
+
#
|
18 |
+
# ==============================================================================
|
19 |
+
from typing import Dict, Optional, Tuple, Union
|
20 |
+
from dataclasses import dataclass
|
21 |
+
|
22 |
+
import torch
|
23 |
+
import torch.nn as nn
|
24 |
+
|
25 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
26 |
+
|
27 |
+
try:
|
28 |
+
# This diffusers is modified and packed in the mirror.
|
29 |
+
from diffusers.loaders import FromOriginalVAEMixin
|
30 |
+
except ImportError:
|
31 |
+
# Use this to be compatible with the original diffusers.
|
32 |
+
from diffusers.loaders.single_file_model import FromOriginalModelMixin as FromOriginalVAEMixin
|
33 |
+
from diffusers.utils.accelerate_utils import apply_forward_hook
|
34 |
+
from diffusers.models.attention_processor import (
|
35 |
+
ADDED_KV_ATTENTION_PROCESSORS,
|
36 |
+
CROSS_ATTENTION_PROCESSORS,
|
37 |
+
Attention,
|
38 |
+
AttentionProcessor,
|
39 |
+
AttnAddedKVProcessor,
|
40 |
+
AttnProcessor,
|
41 |
+
)
|
42 |
+
from diffusers.models.modeling_outputs import AutoencoderKLOutput
|
43 |
+
from diffusers.models.modeling_utils import ModelMixin
|
44 |
+
from .vae import DecoderCausal3D, BaseOutput, DecoderOutput, DiagonalGaussianDistribution, EncoderCausal3D
|
45 |
+
|
46 |
+
|
47 |
+
@dataclass
|
48 |
+
class DecoderOutput2(BaseOutput):
|
49 |
+
sample: torch.FloatTensor
|
50 |
+
posterior: Optional[DiagonalGaussianDistribution] = None
|
51 |
+
|
52 |
+
|
53 |
+
class AutoencoderKLCausal3D(ModelMixin, ConfigMixin, FromOriginalVAEMixin):
|
54 |
+
r"""
|
55 |
+
A VAE model with KL loss for encoding images/videos into latents and decoding latent representations into images/videos.
|
56 |
+
|
57 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
58 |
+
for all models (such as downloading or saving).
|
59 |
+
"""
|
60 |
+
|
61 |
+
_supports_gradient_checkpointing = True
|
62 |
+
|
63 |
+
@register_to_config
|
64 |
+
def __init__(
|
65 |
+
self,
|
66 |
+
in_channels: int = 3,
|
67 |
+
out_channels: int = 3,
|
68 |
+
down_block_types: Tuple[str] = ("DownEncoderBlockCausal3D",),
|
69 |
+
up_block_types: Tuple[str] = ("UpDecoderBlockCausal3D",),
|
70 |
+
block_out_channels: Tuple[int] = (64,),
|
71 |
+
layers_per_block: int = 1,
|
72 |
+
act_fn: str = "silu",
|
73 |
+
latent_channels: int = 4,
|
74 |
+
norm_num_groups: int = 32,
|
75 |
+
sample_size: int = 32,
|
76 |
+
sample_tsize: int = 64,
|
77 |
+
scaling_factor: float = 0.18215,
|
78 |
+
force_upcast: float = True,
|
79 |
+
spatial_compression_ratio: int = 8,
|
80 |
+
time_compression_ratio: int = 4,
|
81 |
+
mid_block_add_attention: bool = True,
|
82 |
+
):
|
83 |
+
super().__init__()
|
84 |
+
|
85 |
+
self.time_compression_ratio = time_compression_ratio
|
86 |
+
|
87 |
+
self.encoder = EncoderCausal3D(
|
88 |
+
in_channels=in_channels,
|
89 |
+
out_channels=latent_channels,
|
90 |
+
down_block_types=down_block_types,
|
91 |
+
block_out_channels=block_out_channels,
|
92 |
+
layers_per_block=layers_per_block,
|
93 |
+
act_fn=act_fn,
|
94 |
+
norm_num_groups=norm_num_groups,
|
95 |
+
double_z=True,
|
96 |
+
time_compression_ratio=time_compression_ratio,
|
97 |
+
spatial_compression_ratio=spatial_compression_ratio,
|
98 |
+
mid_block_add_attention=mid_block_add_attention,
|
99 |
+
)
|
100 |
+
|
101 |
+
self.decoder = DecoderCausal3D(
|
102 |
+
in_channels=latent_channels,
|
103 |
+
out_channels=out_channels,
|
104 |
+
up_block_types=up_block_types,
|
105 |
+
block_out_channels=block_out_channels,
|
106 |
+
layers_per_block=layers_per_block,
|
107 |
+
norm_num_groups=norm_num_groups,
|
108 |
+
act_fn=act_fn,
|
109 |
+
time_compression_ratio=time_compression_ratio,
|
110 |
+
spatial_compression_ratio=spatial_compression_ratio,
|
111 |
+
mid_block_add_attention=mid_block_add_attention,
|
112 |
+
)
|
113 |
+
|
114 |
+
self.quant_conv = nn.Conv3d(2 * latent_channels, 2 * latent_channels, kernel_size=1)
|
115 |
+
self.post_quant_conv = nn.Conv3d(latent_channels, latent_channels, kernel_size=1)
|
116 |
+
|
117 |
+
self.use_slicing = False
|
118 |
+
self.use_spatial_tiling = False
|
119 |
+
self.use_temporal_tiling = False
|
120 |
+
|
121 |
+
# only relevant if vae tiling is enabled
|
122 |
+
self.tile_sample_min_tsize = sample_tsize
|
123 |
+
self.tile_latent_min_tsize = sample_tsize // time_compression_ratio
|
124 |
+
|
125 |
+
self.tile_sample_min_size = self.config.sample_size
|
126 |
+
sample_size = (
|
127 |
+
self.config.sample_size[0]
|
128 |
+
if isinstance(self.config.sample_size, (list, tuple))
|
129 |
+
else self.config.sample_size
|
130 |
+
)
|
131 |
+
self.tile_latent_min_size = int(sample_size / (2 ** (len(self.config.block_out_channels) - 1)))
|
132 |
+
self.tile_overlap_factor = 0.25
|
133 |
+
|
134 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
135 |
+
if isinstance(module, (EncoderCausal3D, DecoderCausal3D)):
|
136 |
+
module.gradient_checkpointing = value
|
137 |
+
|
138 |
+
def enable_temporal_tiling(self, use_tiling: bool = True):
|
139 |
+
self.use_temporal_tiling = use_tiling
|
140 |
+
|
141 |
+
def disable_temporal_tiling(self):
|
142 |
+
self.enable_temporal_tiling(False)
|
143 |
+
|
144 |
+
def enable_spatial_tiling(self, use_tiling: bool = True):
|
145 |
+
self.use_spatial_tiling = use_tiling
|
146 |
+
|
147 |
+
def disable_spatial_tiling(self):
|
148 |
+
self.enable_spatial_tiling(False)
|
149 |
+
|
150 |
+
def enable_tiling(self, use_tiling: bool = True):
|
151 |
+
r"""
|
152 |
+
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
153 |
+
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
154 |
+
processing larger videos.
|
155 |
+
"""
|
156 |
+
self.enable_spatial_tiling(use_tiling)
|
157 |
+
self.enable_temporal_tiling(use_tiling)
|
158 |
+
|
159 |
+
def disable_tiling(self):
|
160 |
+
r"""
|
161 |
+
Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing
|
162 |
+
decoding in one step.
|
163 |
+
"""
|
164 |
+
self.disable_spatial_tiling()
|
165 |
+
self.disable_temporal_tiling()
|
166 |
+
|
167 |
+
def enable_slicing(self):
|
168 |
+
r"""
|
169 |
+
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
170 |
+
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
171 |
+
"""
|
172 |
+
self.use_slicing = True
|
173 |
+
|
174 |
+
def disable_slicing(self):
|
175 |
+
r"""
|
176 |
+
Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
|
177 |
+
decoding in one step.
|
178 |
+
"""
|
179 |
+
self.use_slicing = False
|
180 |
+
|
181 |
+
@property
|
182 |
+
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
|
183 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
184 |
+
r"""
|
185 |
+
Returns:
|
186 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
187 |
+
indexed by its weight name.
|
188 |
+
"""
|
189 |
+
# set recursively
|
190 |
+
processors = {}
|
191 |
+
|
192 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
193 |
+
if hasattr(module, "get_processor"):
|
194 |
+
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
|
195 |
+
|
196 |
+
for sub_name, child in module.named_children():
|
197 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
198 |
+
|
199 |
+
return processors
|
200 |
+
|
201 |
+
for name, module in self.named_children():
|
202 |
+
fn_recursive_add_processors(name, module, processors)
|
203 |
+
|
204 |
+
return processors
|
205 |
+
|
206 |
+
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
207 |
+
def set_attn_processor(
|
208 |
+
self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]], _remove_lora=False
|
209 |
+
):
|
210 |
+
r"""
|
211 |
+
Sets the attention processor to use to compute attention.
|
212 |
+
|
213 |
+
Parameters:
|
214 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
215 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
216 |
+
for **all** `Attention` layers.
|
217 |
+
|
218 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
219 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
220 |
+
|
221 |
+
"""
|
222 |
+
count = len(self.attn_processors.keys())
|
223 |
+
|
224 |
+
if isinstance(processor, dict) and len(processor) != count:
|
225 |
+
raise ValueError(
|
226 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
227 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
228 |
+
)
|
229 |
+
|
230 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
231 |
+
if hasattr(module, "set_processor"):
|
232 |
+
if not isinstance(processor, dict):
|
233 |
+
module.set_processor(processor, _remove_lora=_remove_lora)
|
234 |
+
else:
|
235 |
+
module.set_processor(processor.pop(f"{name}.processor"), _remove_lora=_remove_lora)
|
236 |
+
|
237 |
+
for sub_name, child in module.named_children():
|
238 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
239 |
+
|
240 |
+
for name, module in self.named_children():
|
241 |
+
fn_recursive_attn_processor(name, module, processor)
|
242 |
+
|
243 |
+
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
|
244 |
+
def set_default_attn_processor(self):
|
245 |
+
"""
|
246 |
+
Disables custom attention processors and sets the default attention implementation.
|
247 |
+
"""
|
248 |
+
if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
249 |
+
processor = AttnAddedKVProcessor()
|
250 |
+
elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
251 |
+
processor = AttnProcessor()
|
252 |
+
else:
|
253 |
+
raise ValueError(
|
254 |
+
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
|
255 |
+
)
|
256 |
+
|
257 |
+
self.set_attn_processor(processor, _remove_lora=True)
|
258 |
+
|
259 |
+
@apply_forward_hook
|
260 |
+
def encode(
|
261 |
+
self, x: torch.FloatTensor, return_dict: bool = True
|
262 |
+
) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]:
|
263 |
+
"""
|
264 |
+
Encode a batch of images/videos into latents.
|
265 |
+
|
266 |
+
Args:
|
267 |
+
x (`torch.FloatTensor`): Input batch of images/videos.
|
268 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
269 |
+
Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.
|
270 |
+
|
271 |
+
Returns:
|
272 |
+
The latent representations of the encoded images/videos. If `return_dict` is True, a
|
273 |
+
[`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned.
|
274 |
+
"""
|
275 |
+
assert len(x.shape) == 5, "The input tensor should have 5 dimensions."
|
276 |
+
|
277 |
+
if self.use_temporal_tiling and x.shape[2] > self.tile_sample_min_tsize:
|
278 |
+
return self.temporal_tiled_encode(x, return_dict=return_dict)
|
279 |
+
|
280 |
+
if self.use_spatial_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size):
|
281 |
+
return self.spatial_tiled_encode(x, return_dict=return_dict)
|
282 |
+
|
283 |
+
if self.use_slicing and x.shape[0] > 1:
|
284 |
+
encoded_slices = [self.encoder(x_slice) for x_slice in x.split(1)]
|
285 |
+
h = torch.cat(encoded_slices)
|
286 |
+
else:
|
287 |
+
h = self.encoder(x)
|
288 |
+
|
289 |
+
moments = self.quant_conv(h)
|
290 |
+
posterior = DiagonalGaussianDistribution(moments)
|
291 |
+
|
292 |
+
if not return_dict:
|
293 |
+
return (posterior,)
|
294 |
+
|
295 |
+
return AutoencoderKLOutput(latent_dist=posterior)
|
296 |
+
|
297 |
+
def _decode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]:
|
298 |
+
assert len(z.shape) == 5, "The input tensor should have 5 dimensions."
|
299 |
+
|
300 |
+
if self.use_temporal_tiling and z.shape[2] > self.tile_latent_min_tsize:
|
301 |
+
return self.temporal_tiled_decode(z, return_dict=return_dict)
|
302 |
+
|
303 |
+
if self.use_spatial_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size):
|
304 |
+
return self.spatial_tiled_decode(z, return_dict=return_dict)
|
305 |
+
|
306 |
+
z = self.post_quant_conv(z)
|
307 |
+
dec = self.decoder(z)
|
308 |
+
|
309 |
+
if not return_dict:
|
310 |
+
return (dec,)
|
311 |
+
|
312 |
+
return DecoderOutput(sample=dec)
|
313 |
+
|
314 |
+
@apply_forward_hook
|
315 |
+
def decode(
|
316 |
+
self, z: torch.FloatTensor, return_dict: bool = True, generator=None
|
317 |
+
) -> Union[DecoderOutput, torch.FloatTensor]:
|
318 |
+
"""
|
319 |
+
Decode a batch of images/videos.
|
320 |
+
|
321 |
+
Args:
|
322 |
+
z (`torch.FloatTensor`): Input batch of latent vectors.
|
323 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
324 |
+
Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
|
325 |
+
|
326 |
+
Returns:
|
327 |
+
[`~models.vae.DecoderOutput`] or `tuple`:
|
328 |
+
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
|
329 |
+
returned.
|
330 |
+
|
331 |
+
"""
|
332 |
+
if self.use_slicing and z.shape[0] > 1:
|
333 |
+
decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)]
|
334 |
+
decoded = torch.cat(decoded_slices)
|
335 |
+
else:
|
336 |
+
decoded = self._decode(z).sample
|
337 |
+
|
338 |
+
if not return_dict:
|
339 |
+
return (decoded,)
|
340 |
+
|
341 |
+
return DecoderOutput(sample=decoded)
|
342 |
+
|
343 |
+
def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
|
344 |
+
blend_extent = min(a.shape[-2], b.shape[-2], blend_extent)
|
345 |
+
for y in range(blend_extent):
|
346 |
+
b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, :, y, :] * (y / blend_extent)
|
347 |
+
return b
|
348 |
+
|
349 |
+
def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
|
350 |
+
blend_extent = min(a.shape[-1], b.shape[-1], blend_extent)
|
351 |
+
for x in range(blend_extent):
|
352 |
+
b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, :, x] * (x / blend_extent)
|
353 |
+
return b
|
354 |
+
|
355 |
+
def blend_t(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
|
356 |
+
blend_extent = min(a.shape[-3], b.shape[-3], blend_extent)
|
357 |
+
for x in range(blend_extent):
|
358 |
+
b[:, :, x, :, :] = a[:, :, -blend_extent + x, :, :] * (1 - x / blend_extent) + b[:, :, x, :, :] * (x / blend_extent)
|
359 |
+
return b
|
360 |
+
|
361 |
+
def spatial_tiled_encode(self, x: torch.FloatTensor, return_dict: bool = True, return_moments: bool = False) -> AutoencoderKLOutput:
|
362 |
+
r"""Encode a batch of images/videos using a tiled encoder.
|
363 |
+
|
364 |
+
When this option is enabled, the VAE will split the input tensor into tiles to compute encoding in several
|
365 |
+
steps. This is useful to keep memory use constant regardless of image/videos size. The end result of tiled encoding is
|
366 |
+
different from non-tiled encoding because each tile uses a different encoder. To avoid tiling artifacts, the
|
367 |
+
tiles overlap and are blended together to form a smooth output. You may still see tile-sized changes in the
|
368 |
+
output, but they should be much less noticeable.
|
369 |
+
|
370 |
+
Args:
|
371 |
+
x (`torch.FloatTensor`): Input batch of images/videos.
|
372 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
373 |
+
Whether or not to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.
|
374 |
+
|
375 |
+
Returns:
|
376 |
+
[`~models.autoencoder_kl.AutoencoderKLOutput`] or `tuple`:
|
377 |
+
If return_dict is True, a [`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain
|
378 |
+
`tuple` is returned.
|
379 |
+
"""
|
380 |
+
overlap_size = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor))
|
381 |
+
blend_extent = int(self.tile_latent_min_size * self.tile_overlap_factor)
|
382 |
+
row_limit = self.tile_latent_min_size - blend_extent
|
383 |
+
|
384 |
+
# Split video into tiles and encode them separately.
|
385 |
+
rows = []
|
386 |
+
for i in range(0, x.shape[-2], overlap_size):
|
387 |
+
row = []
|
388 |
+
for j in range(0, x.shape[-1], overlap_size):
|
389 |
+
tile = x[:, :, :, i: i + self.tile_sample_min_size, j: j + self.tile_sample_min_size]
|
390 |
+
tile = self.encoder(tile)
|
391 |
+
tile = self.quant_conv(tile)
|
392 |
+
row.append(tile)
|
393 |
+
rows.append(row)
|
394 |
+
result_rows = []
|
395 |
+
for i, row in enumerate(rows):
|
396 |
+
result_row = []
|
397 |
+
for j, tile in enumerate(row):
|
398 |
+
# blend the above tile and the left tile
|
399 |
+
# to the current tile and add the current tile to the result row
|
400 |
+
if i > 0:
|
401 |
+
tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
|
402 |
+
if j > 0:
|
403 |
+
tile = self.blend_h(row[j - 1], tile, blend_extent)
|
404 |
+
result_row.append(tile[:, :, :, :row_limit, :row_limit])
|
405 |
+
result_rows.append(torch.cat(result_row, dim=-1))
|
406 |
+
|
407 |
+
moments = torch.cat(result_rows, dim=-2)
|
408 |
+
if return_moments:
|
409 |
+
return moments
|
410 |
+
|
411 |
+
posterior = DiagonalGaussianDistribution(moments)
|
412 |
+
if not return_dict:
|
413 |
+
return (posterior,)
|
414 |
+
|
415 |
+
return AutoencoderKLOutput(latent_dist=posterior)
|
416 |
+
|
417 |
+
def spatial_tiled_decode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]:
|
418 |
+
r"""
|
419 |
+
Decode a batch of images/videos using a tiled decoder.
|
420 |
+
|
421 |
+
Args:
|
422 |
+
z (`torch.FloatTensor`): Input batch of latent vectors.
|
423 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
424 |
+
Whether or not to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
|
425 |
+
|
426 |
+
Returns:
|
427 |
+
[`~models.vae.DecoderOutput`] or `tuple`:
|
428 |
+
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
|
429 |
+
returned.
|
430 |
+
"""
|
431 |
+
overlap_size = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor))
|
432 |
+
blend_extent = int(self.tile_sample_min_size * self.tile_overlap_factor)
|
433 |
+
row_limit = self.tile_sample_min_size - blend_extent
|
434 |
+
|
435 |
+
# Split z into overlapping tiles and decode them separately.
|
436 |
+
# The tiles have an overlap to avoid seams between tiles.
|
437 |
+
rows = []
|
438 |
+
for i in range(0, z.shape[-2], overlap_size):
|
439 |
+
row = []
|
440 |
+
for j in range(0, z.shape[-1], overlap_size):
|
441 |
+
tile = z[:, :, :, i: i + self.tile_latent_min_size, j: j + self.tile_latent_min_size]
|
442 |
+
tile = self.post_quant_conv(tile)
|
443 |
+
decoded = self.decoder(tile)
|
444 |
+
row.append(decoded)
|
445 |
+
rows.append(row)
|
446 |
+
result_rows = []
|
447 |
+
for i, row in enumerate(rows):
|
448 |
+
result_row = []
|
449 |
+
for j, tile in enumerate(row):
|
450 |
+
# blend the above tile and the left tile
|
451 |
+
# to the current tile and add the current tile to the result row
|
452 |
+
if i > 0:
|
453 |
+
tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
|
454 |
+
if j > 0:
|
455 |
+
tile = self.blend_h(row[j - 1], tile, blend_extent)
|
456 |
+
result_row.append(tile[:, :, :, :row_limit, :row_limit])
|
457 |
+
result_rows.append(torch.cat(result_row, dim=-1))
|
458 |
+
|
459 |
+
dec = torch.cat(result_rows, dim=-2)
|
460 |
+
if not return_dict:
|
461 |
+
return (dec,)
|
462 |
+
|
463 |
+
return DecoderOutput(sample=dec)
|
464 |
+
|
465 |
+
def temporal_tiled_encode(self, x: torch.FloatTensor, return_dict: bool = True) -> AutoencoderKLOutput:
|
466 |
+
|
467 |
+
B, C, T, H, W = x.shape
|
468 |
+
overlap_size = int(self.tile_sample_min_tsize * (1 - self.tile_overlap_factor))
|
469 |
+
blend_extent = int(self.tile_latent_min_tsize * self.tile_overlap_factor)
|
470 |
+
t_limit = self.tile_latent_min_tsize - blend_extent
|
471 |
+
|
472 |
+
# Split the video into tiles and encode them separately.
|
473 |
+
row = []
|
474 |
+
for i in range(0, T, overlap_size):
|
475 |
+
tile = x[:, :, i: i + self.tile_sample_min_tsize + 1, :, :]
|
476 |
+
if self.use_spatial_tiling and (tile.shape[-1] > self.tile_sample_min_size or tile.shape[-2] > self.tile_sample_min_size):
|
477 |
+
tile = self.spatial_tiled_encode(tile, return_moments=True)
|
478 |
+
else:
|
479 |
+
tile = self.encoder(tile)
|
480 |
+
tile = self.quant_conv(tile)
|
481 |
+
if i > 0:
|
482 |
+
tile = tile[:, :, 1:, :, :]
|
483 |
+
row.append(tile)
|
484 |
+
result_row = []
|
485 |
+
for i, tile in enumerate(row):
|
486 |
+
if i > 0:
|
487 |
+
tile = self.blend_t(row[i - 1], tile, blend_extent)
|
488 |
+
result_row.append(tile[:, :, :t_limit, :, :])
|
489 |
+
else:
|
490 |
+
result_row.append(tile[:, :, :t_limit + 1, :, :])
|
491 |
+
|
492 |
+
moments = torch.cat(result_row, dim=2)
|
493 |
+
posterior = DiagonalGaussianDistribution(moments)
|
494 |
+
|
495 |
+
if not return_dict:
|
496 |
+
return (posterior,)
|
497 |
+
|
498 |
+
return AutoencoderKLOutput(latent_dist=posterior)
|
499 |
+
|
500 |
+
def temporal_tiled_decode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]:
|
501 |
+
# Split z into overlapping tiles and decode them separately.
|
502 |
+
|
503 |
+
B, C, T, H, W = z.shape
|
504 |
+
overlap_size = int(self.tile_latent_min_tsize * (1 - self.tile_overlap_factor))
|
505 |
+
blend_extent = int(self.tile_sample_min_tsize * self.tile_overlap_factor)
|
506 |
+
t_limit = self.tile_sample_min_tsize - blend_extent
|
507 |
+
|
508 |
+
row = []
|
509 |
+
for i in range(0, T, overlap_size):
|
510 |
+
tile = z[:, :, i: i + self.tile_latent_min_tsize + 1, :, :]
|
511 |
+
if self.use_spatial_tiling and (tile.shape[-1] > self.tile_latent_min_size or tile.shape[-2] > self.tile_latent_min_size):
|
512 |
+
decoded = self.spatial_tiled_decode(tile, return_dict=True).sample
|
513 |
+
else:
|
514 |
+
tile = self.post_quant_conv(tile)
|
515 |
+
decoded = self.decoder(tile)
|
516 |
+
if i > 0:
|
517 |
+
decoded = decoded[:, :, 1:, :, :]
|
518 |
+
row.append(decoded)
|
519 |
+
result_row = []
|
520 |
+
for i, tile in enumerate(row):
|
521 |
+
if i > 0:
|
522 |
+
tile = self.blend_t(row[i - 1], tile, blend_extent)
|
523 |
+
result_row.append(tile[:, :, :t_limit, :, :])
|
524 |
+
else:
|
525 |
+
result_row.append(tile[:, :, :t_limit + 1, :, :])
|
526 |
+
|
527 |
+
dec = torch.cat(result_row, dim=2)
|
528 |
+
if not return_dict:
|
529 |
+
return (dec,)
|
530 |
+
|
531 |
+
return DecoderOutput(sample=dec)
|
532 |
+
|
533 |
+
def forward(
|
534 |
+
self,
|
535 |
+
sample: torch.FloatTensor,
|
536 |
+
sample_posterior: bool = False,
|
537 |
+
return_dict: bool = True,
|
538 |
+
return_posterior: bool = False,
|
539 |
+
generator: Optional[torch.Generator] = None,
|
540 |
+
) -> Union[DecoderOutput2, torch.FloatTensor]:
|
541 |
+
r"""
|
542 |
+
Args:
|
543 |
+
sample (`torch.FloatTensor`): Input sample.
|
544 |
+
sample_posterior (`bool`, *optional*, defaults to `False`):
|
545 |
+
Whether to sample from the posterior.
|
546 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
547 |
+
Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
|
548 |
+
"""
|
549 |
+
x = sample
|
550 |
+
posterior = self.encode(x).latent_dist
|
551 |
+
if sample_posterior:
|
552 |
+
z = posterior.sample(generator=generator)
|
553 |
+
else:
|
554 |
+
z = posterior.mode()
|
555 |
+
dec = self.decode(z).sample
|
556 |
+
|
557 |
+
if not return_dict:
|
558 |
+
if return_posterior:
|
559 |
+
return (dec, posterior)
|
560 |
+
else:
|
561 |
+
return (dec,)
|
562 |
+
if return_posterior:
|
563 |
+
return DecoderOutput2(sample=dec, posterior=posterior)
|
564 |
+
else:
|
565 |
+
return DecoderOutput2(sample=dec)
|
566 |
+
|
567 |
+
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections
|
568 |
+
def fuse_qkv_projections(self):
|
569 |
+
"""
|
570 |
+
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query,
|
571 |
+
key, value) are fused. For cross-attention modules, key and value projection matrices are fused.
|
572 |
+
|
573 |
+
<Tip warning={true}>
|
574 |
+
|
575 |
+
This API is 🧪 experimental.
|
576 |
+
|
577 |
+
</Tip>
|
578 |
+
"""
|
579 |
+
self.original_attn_processors = None
|
580 |
+
|
581 |
+
for _, attn_processor in self.attn_processors.items():
|
582 |
+
if "Added" in str(attn_processor.__class__.__name__):
|
583 |
+
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
|
584 |
+
|
585 |
+
self.original_attn_processors = self.attn_processors
|
586 |
+
|
587 |
+
for module in self.modules():
|
588 |
+
if isinstance(module, Attention):
|
589 |
+
module.fuse_projections(fuse=True)
|
590 |
+
|
591 |
+
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
|
592 |
+
def unfuse_qkv_projections(self):
|
593 |
+
"""Disables the fused QKV projection if enabled.
|
594 |
+
|
595 |
+
<Tip warning={true}>
|
596 |
+
|
597 |
+
This API is 🧪 experimental.
|
598 |
+
|
599 |
+
</Tip>
|
600 |
+
|
601 |
+
"""
|
602 |
+
if self.original_attn_processors is not None:
|
603 |
+
self.set_attn_processor(self.original_attn_processors)
|
hyvideo/vae/unet_causal_3d_blocks.py
ADDED
@@ -0,0 +1,764 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# ==============================================================================
|
15 |
+
#
|
16 |
+
# Modified from diffusers==0.29.2
|
17 |
+
#
|
18 |
+
# ==============================================================================
|
19 |
+
|
20 |
+
from typing import Optional, Tuple, Union
|
21 |
+
|
22 |
+
import torch
|
23 |
+
import torch.nn.functional as F
|
24 |
+
from torch import nn
|
25 |
+
from einops import rearrange
|
26 |
+
|
27 |
+
from diffusers.utils import logging
|
28 |
+
from diffusers.models.activations import get_activation
|
29 |
+
from diffusers.models.attention_processor import SpatialNorm
|
30 |
+
from diffusers.models.attention_processor import Attention
|
31 |
+
from diffusers.models.normalization import AdaGroupNorm
|
32 |
+
from diffusers.models.normalization import RMSNorm
|
33 |
+
|
34 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
35 |
+
|
36 |
+
|
37 |
+
def prepare_causal_attention_mask(n_frame: int, n_hw: int, dtype, device, batch_size: int = None):
|
38 |
+
seq_len = n_frame * n_hw
|
39 |
+
mask = torch.full((seq_len, seq_len), float("-inf"), dtype=dtype, device=device)
|
40 |
+
for i in range(seq_len):
|
41 |
+
i_frame = i // n_hw
|
42 |
+
mask[i, : (i_frame + 1) * n_hw] = 0
|
43 |
+
if batch_size is not None:
|
44 |
+
mask = mask.unsqueeze(0).expand(batch_size, -1, -1)
|
45 |
+
return mask
|
46 |
+
|
47 |
+
|
48 |
+
class CausalConv3d(nn.Module):
|
49 |
+
"""
|
50 |
+
Implements a causal 3D convolution layer where each position only depends on previous timesteps and current spatial locations.
|
51 |
+
This maintains temporal causality in video generation tasks.
|
52 |
+
"""
|
53 |
+
|
54 |
+
def __init__(
|
55 |
+
self,
|
56 |
+
chan_in,
|
57 |
+
chan_out,
|
58 |
+
kernel_size: Union[int, Tuple[int, int, int]],
|
59 |
+
stride: Union[int, Tuple[int, int, int]] = 1,
|
60 |
+
dilation: Union[int, Tuple[int, int, int]] = 1,
|
61 |
+
pad_mode='replicate',
|
62 |
+
**kwargs
|
63 |
+
):
|
64 |
+
super().__init__()
|
65 |
+
|
66 |
+
self.pad_mode = pad_mode
|
67 |
+
padding = (kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size - 1, 0) # W, H, T
|
68 |
+
self.time_causal_padding = padding
|
69 |
+
|
70 |
+
self.conv = nn.Conv3d(chan_in, chan_out, kernel_size, stride=stride, dilation=dilation, **kwargs)
|
71 |
+
|
72 |
+
def forward(self, x):
|
73 |
+
x = F.pad(x, self.time_causal_padding, mode=self.pad_mode)
|
74 |
+
return self.conv(x)
|
75 |
+
|
76 |
+
|
77 |
+
class UpsampleCausal3D(nn.Module):
|
78 |
+
"""
|
79 |
+
A 3D upsampling layer with an optional convolution.
|
80 |
+
"""
|
81 |
+
|
82 |
+
def __init__(
|
83 |
+
self,
|
84 |
+
channels: int,
|
85 |
+
use_conv: bool = False,
|
86 |
+
use_conv_transpose: bool = False,
|
87 |
+
out_channels: Optional[int] = None,
|
88 |
+
name: str = "conv",
|
89 |
+
kernel_size: Optional[int] = None,
|
90 |
+
padding=1,
|
91 |
+
norm_type=None,
|
92 |
+
eps=None,
|
93 |
+
elementwise_affine=None,
|
94 |
+
bias=True,
|
95 |
+
interpolate=True,
|
96 |
+
upsample_factor=(2, 2, 2),
|
97 |
+
):
|
98 |
+
super().__init__()
|
99 |
+
self.channels = channels
|
100 |
+
self.out_channels = out_channels or channels
|
101 |
+
self.use_conv = use_conv
|
102 |
+
self.use_conv_transpose = use_conv_transpose
|
103 |
+
self.name = name
|
104 |
+
self.interpolate = interpolate
|
105 |
+
self.upsample_factor = upsample_factor
|
106 |
+
|
107 |
+
if norm_type == "ln_norm":
|
108 |
+
self.norm = nn.LayerNorm(channels, eps, elementwise_affine)
|
109 |
+
elif norm_type == "rms_norm":
|
110 |
+
self.norm = RMSNorm(channels, eps, elementwise_affine)
|
111 |
+
elif norm_type is None:
|
112 |
+
self.norm = None
|
113 |
+
else:
|
114 |
+
raise ValueError(f"unknown norm_type: {norm_type}")
|
115 |
+
|
116 |
+
conv = None
|
117 |
+
if use_conv_transpose:
|
118 |
+
raise NotImplementedError
|
119 |
+
elif use_conv:
|
120 |
+
if kernel_size is None:
|
121 |
+
kernel_size = 3
|
122 |
+
conv = CausalConv3d(self.channels, self.out_channels, kernel_size=kernel_size, bias=bias)
|
123 |
+
|
124 |
+
if name == "conv":
|
125 |
+
self.conv = conv
|
126 |
+
else:
|
127 |
+
self.Conv2d_0 = conv
|
128 |
+
|
129 |
+
def forward(
|
130 |
+
self,
|
131 |
+
hidden_states: torch.FloatTensor,
|
132 |
+
output_size: Optional[int] = None,
|
133 |
+
scale: float = 1.0,
|
134 |
+
) -> torch.FloatTensor:
|
135 |
+
assert hidden_states.shape[1] == self.channels
|
136 |
+
|
137 |
+
if self.norm is not None:
|
138 |
+
raise NotImplementedError
|
139 |
+
|
140 |
+
if self.use_conv_transpose:
|
141 |
+
return self.conv(hidden_states)
|
142 |
+
|
143 |
+
# Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16
|
144 |
+
dtype = hidden_states.dtype
|
145 |
+
if dtype == torch.bfloat16:
|
146 |
+
hidden_states = hidden_states.to(torch.float32)
|
147 |
+
|
148 |
+
# upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
|
149 |
+
if hidden_states.shape[0] >= 64:
|
150 |
+
hidden_states = hidden_states.contiguous()
|
151 |
+
|
152 |
+
# if `output_size` is passed we force the interpolation output
|
153 |
+
# size and do not make use of `scale_factor=2`
|
154 |
+
if self.interpolate:
|
155 |
+
B, C, T, H, W = hidden_states.shape
|
156 |
+
first_h, other_h = hidden_states.split((1, T - 1), dim=2)
|
157 |
+
if output_size is None:
|
158 |
+
if T > 1:
|
159 |
+
other_h = F.interpolate(other_h, scale_factor=self.upsample_factor, mode="nearest")
|
160 |
+
|
161 |
+
first_h = first_h.squeeze(2)
|
162 |
+
first_h = F.interpolate(first_h, scale_factor=self.upsample_factor[1:], mode="nearest")
|
163 |
+
first_h = first_h.unsqueeze(2)
|
164 |
+
else:
|
165 |
+
raise NotImplementedError
|
166 |
+
|
167 |
+
if T > 1:
|
168 |
+
hidden_states = torch.cat((first_h, other_h), dim=2)
|
169 |
+
else:
|
170 |
+
hidden_states = first_h
|
171 |
+
|
172 |
+
# If the input is bfloat16, we cast back to bfloat16
|
173 |
+
if dtype == torch.bfloat16:
|
174 |
+
hidden_states = hidden_states.to(dtype)
|
175 |
+
|
176 |
+
if self.use_conv:
|
177 |
+
if self.name == "conv":
|
178 |
+
hidden_states = self.conv(hidden_states)
|
179 |
+
else:
|
180 |
+
hidden_states = self.Conv2d_0(hidden_states)
|
181 |
+
|
182 |
+
return hidden_states
|
183 |
+
|
184 |
+
|
185 |
+
class DownsampleCausal3D(nn.Module):
|
186 |
+
"""
|
187 |
+
A 3D downsampling layer with an optional convolution.
|
188 |
+
"""
|
189 |
+
|
190 |
+
def __init__(
|
191 |
+
self,
|
192 |
+
channels: int,
|
193 |
+
use_conv: bool = False,
|
194 |
+
out_channels: Optional[int] = None,
|
195 |
+
padding: int = 1,
|
196 |
+
name: str = "conv",
|
197 |
+
kernel_size=3,
|
198 |
+
norm_type=None,
|
199 |
+
eps=None,
|
200 |
+
elementwise_affine=None,
|
201 |
+
bias=True,
|
202 |
+
stride=2,
|
203 |
+
):
|
204 |
+
super().__init__()
|
205 |
+
self.channels = channels
|
206 |
+
self.out_channels = out_channels or channels
|
207 |
+
self.use_conv = use_conv
|
208 |
+
self.padding = padding
|
209 |
+
stride = stride
|
210 |
+
self.name = name
|
211 |
+
|
212 |
+
if norm_type == "ln_norm":
|
213 |
+
self.norm = nn.LayerNorm(channels, eps, elementwise_affine)
|
214 |
+
elif norm_type == "rms_norm":
|
215 |
+
self.norm = RMSNorm(channels, eps, elementwise_affine)
|
216 |
+
elif norm_type is None:
|
217 |
+
self.norm = None
|
218 |
+
else:
|
219 |
+
raise ValueError(f"unknown norm_type: {norm_type}")
|
220 |
+
|
221 |
+
if use_conv:
|
222 |
+
conv = CausalConv3d(
|
223 |
+
self.channels, self.out_channels, kernel_size=kernel_size, stride=stride, bias=bias
|
224 |
+
)
|
225 |
+
else:
|
226 |
+
raise NotImplementedError
|
227 |
+
|
228 |
+
if name == "conv":
|
229 |
+
self.Conv2d_0 = conv
|
230 |
+
self.conv = conv
|
231 |
+
elif name == "Conv2d_0":
|
232 |
+
self.conv = conv
|
233 |
+
else:
|
234 |
+
self.conv = conv
|
235 |
+
|
236 |
+
def forward(self, hidden_states: torch.FloatTensor, scale: float = 1.0) -> torch.FloatTensor:
|
237 |
+
assert hidden_states.shape[1] == self.channels
|
238 |
+
|
239 |
+
if self.norm is not None:
|
240 |
+
hidden_states = self.norm(hidden_states.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
|
241 |
+
|
242 |
+
assert hidden_states.shape[1] == self.channels
|
243 |
+
|
244 |
+
hidden_states = self.conv(hidden_states)
|
245 |
+
|
246 |
+
return hidden_states
|
247 |
+
|
248 |
+
|
249 |
+
class ResnetBlockCausal3D(nn.Module):
|
250 |
+
r"""
|
251 |
+
A Resnet block.
|
252 |
+
"""
|
253 |
+
|
254 |
+
def __init__(
|
255 |
+
self,
|
256 |
+
*,
|
257 |
+
in_channels: int,
|
258 |
+
out_channels: Optional[int] = None,
|
259 |
+
conv_shortcut: bool = False,
|
260 |
+
dropout: float = 0.0,
|
261 |
+
temb_channels: int = 512,
|
262 |
+
groups: int = 32,
|
263 |
+
groups_out: Optional[int] = None,
|
264 |
+
pre_norm: bool = True,
|
265 |
+
eps: float = 1e-6,
|
266 |
+
non_linearity: str = "swish",
|
267 |
+
skip_time_act: bool = False,
|
268 |
+
# default, scale_shift, ada_group, spatial
|
269 |
+
time_embedding_norm: str = "default",
|
270 |
+
kernel: Optional[torch.FloatTensor] = None,
|
271 |
+
output_scale_factor: float = 1.0,
|
272 |
+
use_in_shortcut: Optional[bool] = None,
|
273 |
+
up: bool = False,
|
274 |
+
down: bool = False,
|
275 |
+
conv_shortcut_bias: bool = True,
|
276 |
+
conv_3d_out_channels: Optional[int] = None,
|
277 |
+
):
|
278 |
+
super().__init__()
|
279 |
+
self.pre_norm = pre_norm
|
280 |
+
self.pre_norm = True
|
281 |
+
self.in_channels = in_channels
|
282 |
+
out_channels = in_channels if out_channels is None else out_channels
|
283 |
+
self.out_channels = out_channels
|
284 |
+
self.use_conv_shortcut = conv_shortcut
|
285 |
+
self.up = up
|
286 |
+
self.down = down
|
287 |
+
self.output_scale_factor = output_scale_factor
|
288 |
+
self.time_embedding_norm = time_embedding_norm
|
289 |
+
self.skip_time_act = skip_time_act
|
290 |
+
|
291 |
+
linear_cls = nn.Linear
|
292 |
+
|
293 |
+
if groups_out is None:
|
294 |
+
groups_out = groups
|
295 |
+
|
296 |
+
if self.time_embedding_norm == "ada_group":
|
297 |
+
self.norm1 = AdaGroupNorm(temb_channels, in_channels, groups, eps=eps)
|
298 |
+
elif self.time_embedding_norm == "spatial":
|
299 |
+
self.norm1 = SpatialNorm(in_channels, temb_channels)
|
300 |
+
else:
|
301 |
+
self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True)
|
302 |
+
|
303 |
+
self.conv1 = CausalConv3d(in_channels, out_channels, kernel_size=3, stride=1)
|
304 |
+
|
305 |
+
if temb_channels is not None:
|
306 |
+
if self.time_embedding_norm == "default":
|
307 |
+
self.time_emb_proj = linear_cls(temb_channels, out_channels)
|
308 |
+
elif self.time_embedding_norm == "scale_shift":
|
309 |
+
self.time_emb_proj = linear_cls(temb_channels, 2 * out_channels)
|
310 |
+
elif self.time_embedding_norm == "ada_group" or self.time_embedding_norm == "spatial":
|
311 |
+
self.time_emb_proj = None
|
312 |
+
else:
|
313 |
+
raise ValueError(f"Unknown time_embedding_norm : {self.time_embedding_norm} ")
|
314 |
+
else:
|
315 |
+
self.time_emb_proj = None
|
316 |
+
|
317 |
+
if self.time_embedding_norm == "ada_group":
|
318 |
+
self.norm2 = AdaGroupNorm(temb_channels, out_channels, groups_out, eps=eps)
|
319 |
+
elif self.time_embedding_norm == "spatial":
|
320 |
+
self.norm2 = SpatialNorm(out_channels, temb_channels)
|
321 |
+
else:
|
322 |
+
self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True)
|
323 |
+
|
324 |
+
self.dropout = torch.nn.Dropout(dropout)
|
325 |
+
conv_3d_out_channels = conv_3d_out_channels or out_channels
|
326 |
+
self.conv2 = CausalConv3d(out_channels, conv_3d_out_channels, kernel_size=3, stride=1)
|
327 |
+
|
328 |
+
self.nonlinearity = get_activation(non_linearity)
|
329 |
+
|
330 |
+
self.upsample = self.downsample = None
|
331 |
+
if self.up:
|
332 |
+
self.upsample = UpsampleCausal3D(in_channels, use_conv=False)
|
333 |
+
elif self.down:
|
334 |
+
self.downsample = DownsampleCausal3D(in_channels, use_conv=False, name="op")
|
335 |
+
|
336 |
+
self.use_in_shortcut = self.in_channels != conv_3d_out_channels if use_in_shortcut is None else use_in_shortcut
|
337 |
+
|
338 |
+
self.conv_shortcut = None
|
339 |
+
if self.use_in_shortcut:
|
340 |
+
self.conv_shortcut = CausalConv3d(
|
341 |
+
in_channels,
|
342 |
+
conv_3d_out_channels,
|
343 |
+
kernel_size=1,
|
344 |
+
stride=1,
|
345 |
+
bias=conv_shortcut_bias,
|
346 |
+
)
|
347 |
+
|
348 |
+
def forward(
|
349 |
+
self,
|
350 |
+
input_tensor: torch.FloatTensor,
|
351 |
+
temb: torch.FloatTensor,
|
352 |
+
scale: float = 1.0,
|
353 |
+
) -> torch.FloatTensor:
|
354 |
+
hidden_states = input_tensor
|
355 |
+
|
356 |
+
if self.time_embedding_norm == "ada_group" or self.time_embedding_norm == "spatial":
|
357 |
+
hidden_states = self.norm1(hidden_states, temb)
|
358 |
+
else:
|
359 |
+
hidden_states = self.norm1(hidden_states)
|
360 |
+
|
361 |
+
hidden_states = self.nonlinearity(hidden_states)
|
362 |
+
|
363 |
+
if self.upsample is not None:
|
364 |
+
# upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
|
365 |
+
if hidden_states.shape[0] >= 64:
|
366 |
+
input_tensor = input_tensor.contiguous()
|
367 |
+
hidden_states = hidden_states.contiguous()
|
368 |
+
input_tensor = (
|
369 |
+
self.upsample(input_tensor, scale=scale)
|
370 |
+
)
|
371 |
+
hidden_states = (
|
372 |
+
self.upsample(hidden_states, scale=scale)
|
373 |
+
)
|
374 |
+
elif self.downsample is not None:
|
375 |
+
input_tensor = (
|
376 |
+
self.downsample(input_tensor, scale=scale)
|
377 |
+
)
|
378 |
+
hidden_states = (
|
379 |
+
self.downsample(hidden_states, scale=scale)
|
380 |
+
)
|
381 |
+
|
382 |
+
hidden_states = self.conv1(hidden_states)
|
383 |
+
|
384 |
+
if self.time_emb_proj is not None:
|
385 |
+
if not self.skip_time_act:
|
386 |
+
temb = self.nonlinearity(temb)
|
387 |
+
temb = (
|
388 |
+
self.time_emb_proj(temb, scale)[:, :, None, None]
|
389 |
+
)
|
390 |
+
|
391 |
+
if temb is not None and self.time_embedding_norm == "default":
|
392 |
+
hidden_states = hidden_states + temb
|
393 |
+
|
394 |
+
if self.time_embedding_norm == "ada_group" or self.time_embedding_norm == "spatial":
|
395 |
+
hidden_states = self.norm2(hidden_states, temb)
|
396 |
+
else:
|
397 |
+
hidden_states = self.norm2(hidden_states)
|
398 |
+
|
399 |
+
if temb is not None and self.time_embedding_norm == "scale_shift":
|
400 |
+
scale, shift = torch.chunk(temb, 2, dim=1)
|
401 |
+
hidden_states = hidden_states * (1 + scale) + shift
|
402 |
+
|
403 |
+
hidden_states = self.nonlinearity(hidden_states)
|
404 |
+
|
405 |
+
hidden_states = self.dropout(hidden_states)
|
406 |
+
hidden_states = self.conv2(hidden_states)
|
407 |
+
|
408 |
+
if self.conv_shortcut is not None:
|
409 |
+
input_tensor = (
|
410 |
+
self.conv_shortcut(input_tensor)
|
411 |
+
)
|
412 |
+
|
413 |
+
output_tensor = (input_tensor + hidden_states) / self.output_scale_factor
|
414 |
+
|
415 |
+
return output_tensor
|
416 |
+
|
417 |
+
|
418 |
+
def get_down_block3d(
|
419 |
+
down_block_type: str,
|
420 |
+
num_layers: int,
|
421 |
+
in_channels: int,
|
422 |
+
out_channels: int,
|
423 |
+
temb_channels: int,
|
424 |
+
add_downsample: bool,
|
425 |
+
downsample_stride: int,
|
426 |
+
resnet_eps: float,
|
427 |
+
resnet_act_fn: str,
|
428 |
+
transformer_layers_per_block: int = 1,
|
429 |
+
num_attention_heads: Optional[int] = None,
|
430 |
+
resnet_groups: Optional[int] = None,
|
431 |
+
cross_attention_dim: Optional[int] = None,
|
432 |
+
downsample_padding: Optional[int] = None,
|
433 |
+
dual_cross_attention: bool = False,
|
434 |
+
use_linear_projection: bool = False,
|
435 |
+
only_cross_attention: bool = False,
|
436 |
+
upcast_attention: bool = False,
|
437 |
+
resnet_time_scale_shift: str = "default",
|
438 |
+
attention_type: str = "default",
|
439 |
+
resnet_skip_time_act: bool = False,
|
440 |
+
resnet_out_scale_factor: float = 1.0,
|
441 |
+
cross_attention_norm: Optional[str] = None,
|
442 |
+
attention_head_dim: Optional[int] = None,
|
443 |
+
downsample_type: Optional[str] = None,
|
444 |
+
dropout: float = 0.0,
|
445 |
+
):
|
446 |
+
# If attn head dim is not defined, we default it to the number of heads
|
447 |
+
if attention_head_dim is None:
|
448 |
+
logger.warn(
|
449 |
+
f"It is recommended to provide `attention_head_dim` when calling `get_down_block`. Defaulting `attention_head_dim` to {num_attention_heads}."
|
450 |
+
)
|
451 |
+
attention_head_dim = num_attention_heads
|
452 |
+
|
453 |
+
down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type
|
454 |
+
if down_block_type == "DownEncoderBlockCausal3D":
|
455 |
+
return DownEncoderBlockCausal3D(
|
456 |
+
num_layers=num_layers,
|
457 |
+
in_channels=in_channels,
|
458 |
+
out_channels=out_channels,
|
459 |
+
dropout=dropout,
|
460 |
+
add_downsample=add_downsample,
|
461 |
+
downsample_stride=downsample_stride,
|
462 |
+
resnet_eps=resnet_eps,
|
463 |
+
resnet_act_fn=resnet_act_fn,
|
464 |
+
resnet_groups=resnet_groups,
|
465 |
+
downsample_padding=downsample_padding,
|
466 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
467 |
+
)
|
468 |
+
raise ValueError(f"{down_block_type} does not exist.")
|
469 |
+
|
470 |
+
|
471 |
+
def get_up_block3d(
|
472 |
+
up_block_type: str,
|
473 |
+
num_layers: int,
|
474 |
+
in_channels: int,
|
475 |
+
out_channels: int,
|
476 |
+
prev_output_channel: int,
|
477 |
+
temb_channels: int,
|
478 |
+
add_upsample: bool,
|
479 |
+
upsample_scale_factor: Tuple,
|
480 |
+
resnet_eps: float,
|
481 |
+
resnet_act_fn: str,
|
482 |
+
resolution_idx: Optional[int] = None,
|
483 |
+
transformer_layers_per_block: int = 1,
|
484 |
+
num_attention_heads: Optional[int] = None,
|
485 |
+
resnet_groups: Optional[int] = None,
|
486 |
+
cross_attention_dim: Optional[int] = None,
|
487 |
+
dual_cross_attention: bool = False,
|
488 |
+
use_linear_projection: bool = False,
|
489 |
+
only_cross_attention: bool = False,
|
490 |
+
upcast_attention: bool = False,
|
491 |
+
resnet_time_scale_shift: str = "default",
|
492 |
+
attention_type: str = "default",
|
493 |
+
resnet_skip_time_act: bool = False,
|
494 |
+
resnet_out_scale_factor: float = 1.0,
|
495 |
+
cross_attention_norm: Optional[str] = None,
|
496 |
+
attention_head_dim: Optional[int] = None,
|
497 |
+
upsample_type: Optional[str] = None,
|
498 |
+
dropout: float = 0.0,
|
499 |
+
) -> nn.Module:
|
500 |
+
# If attn head dim is not defined, we default it to the number of heads
|
501 |
+
if attention_head_dim is None:
|
502 |
+
logger.warn(
|
503 |
+
f"It is recommended to provide `attention_head_dim` when calling `get_up_block`. Defaulting `attention_head_dim` to {num_attention_heads}."
|
504 |
+
)
|
505 |
+
attention_head_dim = num_attention_heads
|
506 |
+
|
507 |
+
up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
|
508 |
+
if up_block_type == "UpDecoderBlockCausal3D":
|
509 |
+
return UpDecoderBlockCausal3D(
|
510 |
+
num_layers=num_layers,
|
511 |
+
in_channels=in_channels,
|
512 |
+
out_channels=out_channels,
|
513 |
+
resolution_idx=resolution_idx,
|
514 |
+
dropout=dropout,
|
515 |
+
add_upsample=add_upsample,
|
516 |
+
upsample_scale_factor=upsample_scale_factor,
|
517 |
+
resnet_eps=resnet_eps,
|
518 |
+
resnet_act_fn=resnet_act_fn,
|
519 |
+
resnet_groups=resnet_groups,
|
520 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
521 |
+
temb_channels=temb_channels,
|
522 |
+
)
|
523 |
+
raise ValueError(f"{up_block_type} does not exist.")
|
524 |
+
|
525 |
+
|
526 |
+
class UNetMidBlockCausal3D(nn.Module):
|
527 |
+
"""
|
528 |
+
A 3D UNet mid-block [`UNetMidBlockCausal3D`] with multiple residual blocks and optional attention blocks.
|
529 |
+
"""
|
530 |
+
|
531 |
+
def __init__(
|
532 |
+
self,
|
533 |
+
in_channels: int,
|
534 |
+
temb_channels: int,
|
535 |
+
dropout: float = 0.0,
|
536 |
+
num_layers: int = 1,
|
537 |
+
resnet_eps: float = 1e-6,
|
538 |
+
resnet_time_scale_shift: str = "default", # default, spatial
|
539 |
+
resnet_act_fn: str = "swish",
|
540 |
+
resnet_groups: int = 32,
|
541 |
+
attn_groups: Optional[int] = None,
|
542 |
+
resnet_pre_norm: bool = True,
|
543 |
+
add_attention: bool = True,
|
544 |
+
attention_head_dim: int = 1,
|
545 |
+
output_scale_factor: float = 1.0,
|
546 |
+
):
|
547 |
+
super().__init__()
|
548 |
+
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
549 |
+
self.add_attention = add_attention
|
550 |
+
|
551 |
+
if attn_groups is None:
|
552 |
+
attn_groups = resnet_groups if resnet_time_scale_shift == "default" else None
|
553 |
+
|
554 |
+
# there is always at least one resnet
|
555 |
+
resnets = [
|
556 |
+
ResnetBlockCausal3D(
|
557 |
+
in_channels=in_channels,
|
558 |
+
out_channels=in_channels,
|
559 |
+
temb_channels=temb_channels,
|
560 |
+
eps=resnet_eps,
|
561 |
+
groups=resnet_groups,
|
562 |
+
dropout=dropout,
|
563 |
+
time_embedding_norm=resnet_time_scale_shift,
|
564 |
+
non_linearity=resnet_act_fn,
|
565 |
+
output_scale_factor=output_scale_factor,
|
566 |
+
pre_norm=resnet_pre_norm,
|
567 |
+
)
|
568 |
+
]
|
569 |
+
attentions = []
|
570 |
+
|
571 |
+
if attention_head_dim is None:
|
572 |
+
logger.warn(
|
573 |
+
f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {in_channels}."
|
574 |
+
)
|
575 |
+
attention_head_dim = in_channels
|
576 |
+
|
577 |
+
for _ in range(num_layers):
|
578 |
+
if self.add_attention:
|
579 |
+
attentions.append(
|
580 |
+
Attention(
|
581 |
+
in_channels,
|
582 |
+
heads=in_channels // attention_head_dim,
|
583 |
+
dim_head=attention_head_dim,
|
584 |
+
rescale_output_factor=output_scale_factor,
|
585 |
+
eps=resnet_eps,
|
586 |
+
norm_num_groups=attn_groups,
|
587 |
+
spatial_norm_dim=temb_channels if resnet_time_scale_shift == "spatial" else None,
|
588 |
+
residual_connection=True,
|
589 |
+
bias=True,
|
590 |
+
upcast_softmax=True,
|
591 |
+
_from_deprecated_attn_block=True,
|
592 |
+
)
|
593 |
+
)
|
594 |
+
else:
|
595 |
+
attentions.append(None)
|
596 |
+
|
597 |
+
resnets.append(
|
598 |
+
ResnetBlockCausal3D(
|
599 |
+
in_channels=in_channels,
|
600 |
+
out_channels=in_channels,
|
601 |
+
temb_channels=temb_channels,
|
602 |
+
eps=resnet_eps,
|
603 |
+
groups=resnet_groups,
|
604 |
+
dropout=dropout,
|
605 |
+
time_embedding_norm=resnet_time_scale_shift,
|
606 |
+
non_linearity=resnet_act_fn,
|
607 |
+
output_scale_factor=output_scale_factor,
|
608 |
+
pre_norm=resnet_pre_norm,
|
609 |
+
)
|
610 |
+
)
|
611 |
+
|
612 |
+
self.attentions = nn.ModuleList(attentions)
|
613 |
+
self.resnets = nn.ModuleList(resnets)
|
614 |
+
|
615 |
+
def forward(self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None) -> torch.FloatTensor:
|
616 |
+
hidden_states = self.resnets[0](hidden_states, temb)
|
617 |
+
for attn, resnet in zip(self.attentions, self.resnets[1:]):
|
618 |
+
if attn is not None:
|
619 |
+
B, C, T, H, W = hidden_states.shape
|
620 |
+
hidden_states = rearrange(hidden_states, "b c f h w -> b (f h w) c")
|
621 |
+
attention_mask = prepare_causal_attention_mask(
|
622 |
+
T, H * W, hidden_states.dtype, hidden_states.device, batch_size=B
|
623 |
+
)
|
624 |
+
hidden_states = attn(hidden_states, temb=temb, attention_mask=attention_mask)
|
625 |
+
hidden_states = rearrange(hidden_states, "b (f h w) c -> b c f h w", f=T, h=H, w=W)
|
626 |
+
hidden_states = resnet(hidden_states, temb)
|
627 |
+
|
628 |
+
return hidden_states
|
629 |
+
|
630 |
+
|
631 |
+
class DownEncoderBlockCausal3D(nn.Module):
|
632 |
+
def __init__(
|
633 |
+
self,
|
634 |
+
in_channels: int,
|
635 |
+
out_channels: int,
|
636 |
+
dropout: float = 0.0,
|
637 |
+
num_layers: int = 1,
|
638 |
+
resnet_eps: float = 1e-6,
|
639 |
+
resnet_time_scale_shift: str = "default",
|
640 |
+
resnet_act_fn: str = "swish",
|
641 |
+
resnet_groups: int = 32,
|
642 |
+
resnet_pre_norm: bool = True,
|
643 |
+
output_scale_factor: float = 1.0,
|
644 |
+
add_downsample: bool = True,
|
645 |
+
downsample_stride: int = 2,
|
646 |
+
downsample_padding: int = 1,
|
647 |
+
):
|
648 |
+
super().__init__()
|
649 |
+
resnets = []
|
650 |
+
|
651 |
+
for i in range(num_layers):
|
652 |
+
in_channels = in_channels if i == 0 else out_channels
|
653 |
+
resnets.append(
|
654 |
+
ResnetBlockCausal3D(
|
655 |
+
in_channels=in_channels,
|
656 |
+
out_channels=out_channels,
|
657 |
+
temb_channels=None,
|
658 |
+
eps=resnet_eps,
|
659 |
+
groups=resnet_groups,
|
660 |
+
dropout=dropout,
|
661 |
+
time_embedding_norm=resnet_time_scale_shift,
|
662 |
+
non_linearity=resnet_act_fn,
|
663 |
+
output_scale_factor=output_scale_factor,
|
664 |
+
pre_norm=resnet_pre_norm,
|
665 |
+
)
|
666 |
+
)
|
667 |
+
|
668 |
+
self.resnets = nn.ModuleList(resnets)
|
669 |
+
|
670 |
+
if add_downsample:
|
671 |
+
self.downsamplers = nn.ModuleList(
|
672 |
+
[
|
673 |
+
DownsampleCausal3D(
|
674 |
+
out_channels,
|
675 |
+
use_conv=True,
|
676 |
+
out_channels=out_channels,
|
677 |
+
padding=downsample_padding,
|
678 |
+
name="op",
|
679 |
+
stride=downsample_stride,
|
680 |
+
)
|
681 |
+
]
|
682 |
+
)
|
683 |
+
else:
|
684 |
+
self.downsamplers = None
|
685 |
+
|
686 |
+
def forward(self, hidden_states: torch.FloatTensor, scale: float = 1.0) -> torch.FloatTensor:
|
687 |
+
for resnet in self.resnets:
|
688 |
+
hidden_states = resnet(hidden_states, temb=None, scale=scale)
|
689 |
+
|
690 |
+
if self.downsamplers is not None:
|
691 |
+
for downsampler in self.downsamplers:
|
692 |
+
hidden_states = downsampler(hidden_states, scale)
|
693 |
+
|
694 |
+
return hidden_states
|
695 |
+
|
696 |
+
|
697 |
+
class UpDecoderBlockCausal3D(nn.Module):
|
698 |
+
def __init__(
|
699 |
+
self,
|
700 |
+
in_channels: int,
|
701 |
+
out_channels: int,
|
702 |
+
resolution_idx: Optional[int] = None,
|
703 |
+
dropout: float = 0.0,
|
704 |
+
num_layers: int = 1,
|
705 |
+
resnet_eps: float = 1e-6,
|
706 |
+
resnet_time_scale_shift: str = "default", # default, spatial
|
707 |
+
resnet_act_fn: str = "swish",
|
708 |
+
resnet_groups: int = 32,
|
709 |
+
resnet_pre_norm: bool = True,
|
710 |
+
output_scale_factor: float = 1.0,
|
711 |
+
add_upsample: bool = True,
|
712 |
+
upsample_scale_factor=(2, 2, 2),
|
713 |
+
temb_channels: Optional[int] = None,
|
714 |
+
):
|
715 |
+
super().__init__()
|
716 |
+
resnets = []
|
717 |
+
|
718 |
+
for i in range(num_layers):
|
719 |
+
input_channels = in_channels if i == 0 else out_channels
|
720 |
+
|
721 |
+
resnets.append(
|
722 |
+
ResnetBlockCausal3D(
|
723 |
+
in_channels=input_channels,
|
724 |
+
out_channels=out_channels,
|
725 |
+
temb_channels=temb_channels,
|
726 |
+
eps=resnet_eps,
|
727 |
+
groups=resnet_groups,
|
728 |
+
dropout=dropout,
|
729 |
+
time_embedding_norm=resnet_time_scale_shift,
|
730 |
+
non_linearity=resnet_act_fn,
|
731 |
+
output_scale_factor=output_scale_factor,
|
732 |
+
pre_norm=resnet_pre_norm,
|
733 |
+
)
|
734 |
+
)
|
735 |
+
|
736 |
+
self.resnets = nn.ModuleList(resnets)
|
737 |
+
|
738 |
+
if add_upsample:
|
739 |
+
self.upsamplers = nn.ModuleList(
|
740 |
+
[
|
741 |
+
UpsampleCausal3D(
|
742 |
+
out_channels,
|
743 |
+
use_conv=True,
|
744 |
+
out_channels=out_channels,
|
745 |
+
upsample_factor=upsample_scale_factor,
|
746 |
+
)
|
747 |
+
]
|
748 |
+
)
|
749 |
+
else:
|
750 |
+
self.upsamplers = None
|
751 |
+
|
752 |
+
self.resolution_idx = resolution_idx
|
753 |
+
|
754 |
+
def forward(
|
755 |
+
self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, scale: float = 1.0
|
756 |
+
) -> torch.FloatTensor:
|
757 |
+
for resnet in self.resnets:
|
758 |
+
hidden_states = resnet(hidden_states, temb=temb, scale=scale)
|
759 |
+
|
760 |
+
if self.upsamplers is not None:
|
761 |
+
for upsampler in self.upsamplers:
|
762 |
+
hidden_states = upsampler(hidden_states)
|
763 |
+
|
764 |
+
return hidden_states
|
hyvideo/vae/vae.py
ADDED
@@ -0,0 +1,355 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from typing import Optional, Tuple
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
|
8 |
+
from diffusers.utils import BaseOutput, is_torch_version
|
9 |
+
from diffusers.utils.torch_utils import randn_tensor
|
10 |
+
from diffusers.models.attention_processor import SpatialNorm
|
11 |
+
from .unet_causal_3d_blocks import (
|
12 |
+
CausalConv3d,
|
13 |
+
UNetMidBlockCausal3D,
|
14 |
+
get_down_block3d,
|
15 |
+
get_up_block3d,
|
16 |
+
)
|
17 |
+
|
18 |
+
|
19 |
+
@dataclass
|
20 |
+
class DecoderOutput(BaseOutput):
|
21 |
+
r"""
|
22 |
+
Output of decoding method.
|
23 |
+
|
24 |
+
Args:
|
25 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
26 |
+
The decoded output sample from the last layer of the model.
|
27 |
+
"""
|
28 |
+
|
29 |
+
sample: torch.FloatTensor
|
30 |
+
|
31 |
+
|
32 |
+
class EncoderCausal3D(nn.Module):
|
33 |
+
r"""
|
34 |
+
The `EncoderCausal3D` layer of a variational autoencoder that encodes its input into a latent representation.
|
35 |
+
"""
|
36 |
+
|
37 |
+
def __init__(
|
38 |
+
self,
|
39 |
+
in_channels: int = 3,
|
40 |
+
out_channels: int = 3,
|
41 |
+
down_block_types: Tuple[str, ...] = ("DownEncoderBlockCausal3D",),
|
42 |
+
block_out_channels: Tuple[int, ...] = (64,),
|
43 |
+
layers_per_block: int = 2,
|
44 |
+
norm_num_groups: int = 32,
|
45 |
+
act_fn: str = "silu",
|
46 |
+
double_z: bool = True,
|
47 |
+
mid_block_add_attention=True,
|
48 |
+
time_compression_ratio: int = 4,
|
49 |
+
spatial_compression_ratio: int = 8,
|
50 |
+
):
|
51 |
+
super().__init__()
|
52 |
+
self.layers_per_block = layers_per_block
|
53 |
+
|
54 |
+
self.conv_in = CausalConv3d(in_channels, block_out_channels[0], kernel_size=3, stride=1)
|
55 |
+
self.mid_block = None
|
56 |
+
self.down_blocks = nn.ModuleList([])
|
57 |
+
|
58 |
+
# down
|
59 |
+
output_channel = block_out_channels[0]
|
60 |
+
for i, down_block_type in enumerate(down_block_types):
|
61 |
+
input_channel = output_channel
|
62 |
+
output_channel = block_out_channels[i]
|
63 |
+
is_final_block = i == len(block_out_channels) - 1
|
64 |
+
num_spatial_downsample_layers = int(np.log2(spatial_compression_ratio))
|
65 |
+
num_time_downsample_layers = int(np.log2(time_compression_ratio))
|
66 |
+
|
67 |
+
if time_compression_ratio == 4:
|
68 |
+
add_spatial_downsample = bool(i < num_spatial_downsample_layers)
|
69 |
+
add_time_downsample = bool(
|
70 |
+
i >= (len(block_out_channels) - 1 - num_time_downsample_layers)
|
71 |
+
and not is_final_block
|
72 |
+
)
|
73 |
+
else:
|
74 |
+
raise ValueError(f"Unsupported time_compression_ratio: {time_compression_ratio}.")
|
75 |
+
|
76 |
+
downsample_stride_HW = (2, 2) if add_spatial_downsample else (1, 1)
|
77 |
+
downsample_stride_T = (2,) if add_time_downsample else (1,)
|
78 |
+
downsample_stride = tuple(downsample_stride_T + downsample_stride_HW)
|
79 |
+
down_block = get_down_block3d(
|
80 |
+
down_block_type,
|
81 |
+
num_layers=self.layers_per_block,
|
82 |
+
in_channels=input_channel,
|
83 |
+
out_channels=output_channel,
|
84 |
+
add_downsample=bool(add_spatial_downsample or add_time_downsample),
|
85 |
+
downsample_stride=downsample_stride,
|
86 |
+
resnet_eps=1e-6,
|
87 |
+
downsample_padding=0,
|
88 |
+
resnet_act_fn=act_fn,
|
89 |
+
resnet_groups=norm_num_groups,
|
90 |
+
attention_head_dim=output_channel,
|
91 |
+
temb_channels=None,
|
92 |
+
)
|
93 |
+
self.down_blocks.append(down_block)
|
94 |
+
|
95 |
+
# mid
|
96 |
+
self.mid_block = UNetMidBlockCausal3D(
|
97 |
+
in_channels=block_out_channels[-1],
|
98 |
+
resnet_eps=1e-6,
|
99 |
+
resnet_act_fn=act_fn,
|
100 |
+
output_scale_factor=1,
|
101 |
+
resnet_time_scale_shift="default",
|
102 |
+
attention_head_dim=block_out_channels[-1],
|
103 |
+
resnet_groups=norm_num_groups,
|
104 |
+
temb_channels=None,
|
105 |
+
add_attention=mid_block_add_attention,
|
106 |
+
)
|
107 |
+
|
108 |
+
# out
|
109 |
+
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[-1], num_groups=norm_num_groups, eps=1e-6)
|
110 |
+
self.conv_act = nn.SiLU()
|
111 |
+
|
112 |
+
conv_out_channels = 2 * out_channels if double_z else out_channels
|
113 |
+
self.conv_out = CausalConv3d(block_out_channels[-1], conv_out_channels, kernel_size=3)
|
114 |
+
|
115 |
+
def forward(self, sample: torch.FloatTensor) -> torch.FloatTensor:
|
116 |
+
r"""The forward method of the `EncoderCausal3D` class."""
|
117 |
+
assert len(sample.shape) == 5, "The input tensor should have 5 dimensions"
|
118 |
+
|
119 |
+
sample = self.conv_in(sample)
|
120 |
+
|
121 |
+
# down
|
122 |
+
for down_block in self.down_blocks:
|
123 |
+
sample = down_block(sample)
|
124 |
+
|
125 |
+
# middle
|
126 |
+
sample = self.mid_block(sample)
|
127 |
+
|
128 |
+
# post-process
|
129 |
+
sample = self.conv_norm_out(sample)
|
130 |
+
sample = self.conv_act(sample)
|
131 |
+
sample = self.conv_out(sample)
|
132 |
+
|
133 |
+
return sample
|
134 |
+
|
135 |
+
|
136 |
+
class DecoderCausal3D(nn.Module):
|
137 |
+
r"""
|
138 |
+
The `DecoderCausal3D` layer of a variational autoencoder that decodes its latent representation into an output sample.
|
139 |
+
"""
|
140 |
+
|
141 |
+
def __init__(
|
142 |
+
self,
|
143 |
+
in_channels: int = 3,
|
144 |
+
out_channels: int = 3,
|
145 |
+
up_block_types: Tuple[str, ...] = ("UpDecoderBlockCausal3D",),
|
146 |
+
block_out_channels: Tuple[int, ...] = (64,),
|
147 |
+
layers_per_block: int = 2,
|
148 |
+
norm_num_groups: int = 32,
|
149 |
+
act_fn: str = "silu",
|
150 |
+
norm_type: str = "group", # group, spatial
|
151 |
+
mid_block_add_attention=True,
|
152 |
+
time_compression_ratio: int = 4,
|
153 |
+
spatial_compression_ratio: int = 8,
|
154 |
+
):
|
155 |
+
super().__init__()
|
156 |
+
self.layers_per_block = layers_per_block
|
157 |
+
|
158 |
+
self.conv_in = CausalConv3d(in_channels, block_out_channels[-1], kernel_size=3, stride=1)
|
159 |
+
self.mid_block = None
|
160 |
+
self.up_blocks = nn.ModuleList([])
|
161 |
+
|
162 |
+
temb_channels = in_channels if norm_type == "spatial" else None
|
163 |
+
|
164 |
+
# mid
|
165 |
+
self.mid_block = UNetMidBlockCausal3D(
|
166 |
+
in_channels=block_out_channels[-1],
|
167 |
+
resnet_eps=1e-6,
|
168 |
+
resnet_act_fn=act_fn,
|
169 |
+
output_scale_factor=1,
|
170 |
+
resnet_time_scale_shift="default" if norm_type == "group" else norm_type,
|
171 |
+
attention_head_dim=block_out_channels[-1],
|
172 |
+
resnet_groups=norm_num_groups,
|
173 |
+
temb_channels=temb_channels,
|
174 |
+
add_attention=mid_block_add_attention,
|
175 |
+
)
|
176 |
+
|
177 |
+
# up
|
178 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
179 |
+
output_channel = reversed_block_out_channels[0]
|
180 |
+
for i, up_block_type in enumerate(up_block_types):
|
181 |
+
prev_output_channel = output_channel
|
182 |
+
output_channel = reversed_block_out_channels[i]
|
183 |
+
is_final_block = i == len(block_out_channels) - 1
|
184 |
+
num_spatial_upsample_layers = int(np.log2(spatial_compression_ratio))
|
185 |
+
num_time_upsample_layers = int(np.log2(time_compression_ratio))
|
186 |
+
|
187 |
+
if time_compression_ratio == 4:
|
188 |
+
add_spatial_upsample = bool(i < num_spatial_upsample_layers)
|
189 |
+
add_time_upsample = bool(
|
190 |
+
i >= len(block_out_channels) - 1 - num_time_upsample_layers
|
191 |
+
and not is_final_block
|
192 |
+
)
|
193 |
+
else:
|
194 |
+
raise ValueError(f"Unsupported time_compression_ratio: {time_compression_ratio}.")
|
195 |
+
|
196 |
+
upsample_scale_factor_HW = (2, 2) if add_spatial_upsample else (1, 1)
|
197 |
+
upsample_scale_factor_T = (2,) if add_time_upsample else (1,)
|
198 |
+
upsample_scale_factor = tuple(upsample_scale_factor_T + upsample_scale_factor_HW)
|
199 |
+
up_block = get_up_block3d(
|
200 |
+
up_block_type,
|
201 |
+
num_layers=self.layers_per_block + 1,
|
202 |
+
in_channels=prev_output_channel,
|
203 |
+
out_channels=output_channel,
|
204 |
+
prev_output_channel=None,
|
205 |
+
add_upsample=bool(add_spatial_upsample or add_time_upsample),
|
206 |
+
upsample_scale_factor=upsample_scale_factor,
|
207 |
+
resnet_eps=1e-6,
|
208 |
+
resnet_act_fn=act_fn,
|
209 |
+
resnet_groups=norm_num_groups,
|
210 |
+
attention_head_dim=output_channel,
|
211 |
+
temb_channels=temb_channels,
|
212 |
+
resnet_time_scale_shift=norm_type,
|
213 |
+
)
|
214 |
+
self.up_blocks.append(up_block)
|
215 |
+
prev_output_channel = output_channel
|
216 |
+
|
217 |
+
# out
|
218 |
+
if norm_type == "spatial":
|
219 |
+
self.conv_norm_out = SpatialNorm(block_out_channels[0], temb_channels)
|
220 |
+
else:
|
221 |
+
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6)
|
222 |
+
self.conv_act = nn.SiLU()
|
223 |
+
self.conv_out = CausalConv3d(block_out_channels[0], out_channels, kernel_size=3)
|
224 |
+
|
225 |
+
self.gradient_checkpointing = False
|
226 |
+
|
227 |
+
def forward(
|
228 |
+
self,
|
229 |
+
sample: torch.FloatTensor,
|
230 |
+
latent_embeds: Optional[torch.FloatTensor] = None,
|
231 |
+
) -> torch.FloatTensor:
|
232 |
+
r"""The forward method of the `DecoderCausal3D` class."""
|
233 |
+
assert len(sample.shape) == 5, "The input tensor should have 5 dimensions."
|
234 |
+
|
235 |
+
sample = self.conv_in(sample)
|
236 |
+
|
237 |
+
upscale_dtype = next(iter(self.up_blocks.parameters())).dtype
|
238 |
+
if self.training and self.gradient_checkpointing:
|
239 |
+
|
240 |
+
def create_custom_forward(module):
|
241 |
+
def custom_forward(*inputs):
|
242 |
+
return module(*inputs)
|
243 |
+
|
244 |
+
return custom_forward
|
245 |
+
|
246 |
+
if is_torch_version(">=", "1.11.0"):
|
247 |
+
# middle
|
248 |
+
sample = torch.utils.checkpoint.checkpoint(
|
249 |
+
create_custom_forward(self.mid_block),
|
250 |
+
sample,
|
251 |
+
latent_embeds,
|
252 |
+
use_reentrant=False,
|
253 |
+
)
|
254 |
+
sample = sample.to(upscale_dtype)
|
255 |
+
|
256 |
+
# up
|
257 |
+
for up_block in self.up_blocks:
|
258 |
+
sample = torch.utils.checkpoint.checkpoint(
|
259 |
+
create_custom_forward(up_block),
|
260 |
+
sample,
|
261 |
+
latent_embeds,
|
262 |
+
use_reentrant=False,
|
263 |
+
)
|
264 |
+
else:
|
265 |
+
# middle
|
266 |
+
sample = torch.utils.checkpoint.checkpoint(
|
267 |
+
create_custom_forward(self.mid_block), sample, latent_embeds
|
268 |
+
)
|
269 |
+
sample = sample.to(upscale_dtype)
|
270 |
+
|
271 |
+
# up
|
272 |
+
for up_block in self.up_blocks:
|
273 |
+
sample = torch.utils.checkpoint.checkpoint(create_custom_forward(up_block), sample, latent_embeds)
|
274 |
+
else:
|
275 |
+
# middle
|
276 |
+
sample = self.mid_block(sample, latent_embeds)
|
277 |
+
sample = sample.to(upscale_dtype)
|
278 |
+
|
279 |
+
# up
|
280 |
+
for up_block in self.up_blocks:
|
281 |
+
sample = up_block(sample, latent_embeds)
|
282 |
+
|
283 |
+
# post-process
|
284 |
+
if latent_embeds is None:
|
285 |
+
sample = self.conv_norm_out(sample)
|
286 |
+
else:
|
287 |
+
sample = self.conv_norm_out(sample, latent_embeds)
|
288 |
+
sample = self.conv_act(sample)
|
289 |
+
sample = self.conv_out(sample)
|
290 |
+
|
291 |
+
return sample
|
292 |
+
|
293 |
+
|
294 |
+
class DiagonalGaussianDistribution(object):
|
295 |
+
def __init__(self, parameters: torch.Tensor, deterministic: bool = False):
|
296 |
+
if parameters.ndim == 3:
|
297 |
+
dim = 2 # (B, L, C)
|
298 |
+
elif parameters.ndim == 5 or parameters.ndim == 4:
|
299 |
+
dim = 1 # (B, C, T, H ,W) / (B, C, H, W)
|
300 |
+
else:
|
301 |
+
raise NotImplementedError
|
302 |
+
self.parameters = parameters
|
303 |
+
self.mean, self.logvar = torch.chunk(parameters, 2, dim=dim)
|
304 |
+
self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
|
305 |
+
self.deterministic = deterministic
|
306 |
+
self.std = torch.exp(0.5 * self.logvar)
|
307 |
+
self.var = torch.exp(self.logvar)
|
308 |
+
if self.deterministic:
|
309 |
+
self.var = self.std = torch.zeros_like(
|
310 |
+
self.mean, device=self.parameters.device, dtype=self.parameters.dtype
|
311 |
+
)
|
312 |
+
|
313 |
+
def sample(self, generator: Optional[torch.Generator] = None) -> torch.FloatTensor:
|
314 |
+
# make sure sample is on the same device as the parameters and has same dtype
|
315 |
+
sample = randn_tensor(
|
316 |
+
self.mean.shape,
|
317 |
+
generator=generator,
|
318 |
+
device=self.parameters.device,
|
319 |
+
dtype=self.parameters.dtype,
|
320 |
+
)
|
321 |
+
x = self.mean + self.std * sample
|
322 |
+
return x
|
323 |
+
|
324 |
+
def kl(self, other: "DiagonalGaussianDistribution" = None) -> torch.Tensor:
|
325 |
+
if self.deterministic:
|
326 |
+
return torch.Tensor([0.0])
|
327 |
+
else:
|
328 |
+
reduce_dim = list(range(1, self.mean.ndim))
|
329 |
+
if other is None:
|
330 |
+
return 0.5 * torch.sum(
|
331 |
+
torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar,
|
332 |
+
dim=reduce_dim,
|
333 |
+
)
|
334 |
+
else:
|
335 |
+
return 0.5 * torch.sum(
|
336 |
+
torch.pow(self.mean - other.mean, 2) / other.var
|
337 |
+
+ self.var / other.var
|
338 |
+
- 1.0
|
339 |
+
- self.logvar
|
340 |
+
+ other.logvar,
|
341 |
+
dim=reduce_dim,
|
342 |
+
)
|
343 |
+
|
344 |
+
def nll(self, sample: torch.Tensor, dims: Tuple[int, ...] = [1, 2, 3]) -> torch.Tensor:
|
345 |
+
if self.deterministic:
|
346 |
+
return torch.Tensor([0.0])
|
347 |
+
logtwopi = np.log(2.0 * np.pi)
|
348 |
+
return 0.5 * torch.sum(
|
349 |
+
logtwopi + self.logvar +
|
350 |
+
torch.pow(sample - self.mean, 2) / self.var,
|
351 |
+
dim=dims,
|
352 |
+
)
|
353 |
+
|
354 |
+
def mode(self) -> torch.Tensor:
|
355 |
+
return self.mean
|