import argparse from .constants import * import re from .modules.models import HUNYUAN_VIDEO_CONFIG def parse_args(namespace=None): parser = argparse.ArgumentParser(description="HunyuanVideo inference script") parser = add_network_args(parser) parser = add_extra_models_args(parser) parser = add_denoise_schedule_args(parser) parser = add_inference_args(parser) parser = add_parallel_args(parser) args = parser.parse_args(namespace=namespace) args = sanity_check_args(args) return args def add_network_args(parser: argparse.ArgumentParser): group = parser.add_argument_group(title="HunyuanVideo network args") # Main model group.add_argument( "--model", type=str, choices=list(HUNYUAN_VIDEO_CONFIG.keys()), default="HYVideo-T/2-cfgdistill", ) group.add_argument( "--latent-channels", type=str, default=16, help="Number of latent channels of DiT. If None, it will be determined by `vae`. If provided, " "it still needs to match the latent channels of the VAE model.", ) group.add_argument( "--precision", type=str, default="bf16", choices=PRECISIONS, help="Precision mode. Options: fp32, fp16, bf16. Applied to the backbone model and optimizer.", ) # RoPE group.add_argument( "--rope-theta", type=int, default=256, help="Theta used in RoPE." ) return parser def add_extra_models_args(parser: argparse.ArgumentParser): group = parser.add_argument_group( title="Extra models args, including vae, text encoders and tokenizers)" ) # - VAE group.add_argument( "--vae", type=str, default="884-16c-hy", choices=list(VAE_PATH), help="Name of the VAE model.", ) group.add_argument( "--vae-precision", type=str, default="fp16", choices=PRECISIONS, help="Precision mode for the VAE model.", ) group.add_argument( "--vae-tiling", action="store_true", help="Enable tiling for the VAE model to save GPU memory.", ) group.set_defaults(vae_tiling=True) group.add_argument( "--text-encoder", type=str, default="llm", choices=list(TEXT_ENCODER_PATH), help="Name of the text encoder model.", ) group.add_argument( "--text-encoder-precision", type=str, default="fp16", choices=PRECISIONS, help="Precision mode for the text encoder model.", ) group.add_argument( "--text-states-dim", type=int, default=4096, help="Dimension of the text encoder hidden states.", ) group.add_argument( "--text-len", type=int, default=256, help="Maximum length of the text input." ) group.add_argument( "--tokenizer", type=str, default="llm", choices=list(TOKENIZER_PATH), help="Name of the tokenizer model.", ) group.add_argument( "--prompt-template", type=str, default="dit-llm-encode", choices=PROMPT_TEMPLATE, help="Image prompt template for the decoder-only text encoder model.", ) group.add_argument( "--prompt-template-video", type=str, default="dit-llm-encode-video", choices=PROMPT_TEMPLATE, help="Video prompt template for the decoder-only text encoder model.", ) group.add_argument( "--hidden-state-skip-layer", type=int, default=2, help="Skip layer for hidden states.", ) group.add_argument( "--apply-final-norm", action="store_true", help="Apply final normalization to the used text encoder hidden states.", ) # - CLIP group.add_argument( "--text-encoder-2", type=str, default="clipL", choices=list(TEXT_ENCODER_PATH), help="Name of the second text encoder model.", ) group.add_argument( "--text-encoder-precision-2", type=str, default="fp16", choices=PRECISIONS, help="Precision mode for the second text encoder model.", ) group.add_argument( "--text-states-dim-2", type=int, default=768, help="Dimension of the second text encoder hidden states.", ) group.add_argument( "--tokenizer-2", type=str, default="clipL", choices=list(TOKENIZER_PATH), help="Name of the second tokenizer model.", ) group.add_argument( "--text-len-2", type=int, default=77, help="Maximum length of the second text input.", ) return parser def add_denoise_schedule_args(parser: argparse.ArgumentParser): group = parser.add_argument_group(title="Denoise schedule args") group.add_argument( "--denoise-type", type=str, default="flow", help="Denoise type for noised inputs.", ) # Flow Matching group.add_argument( "--flow-shift", type=float, default=7.0, help="Shift factor for flow matching schedulers.", ) group.add_argument( "--flow-reverse", action="store_true", help="If reverse, learning/sampling from t=1 -> t=0.", ) group.add_argument( "--flow-solver", type=str, default="euler", help="Solver for flow matching.", ) group.add_argument( "--use-linear-quadratic-schedule", action="store_true", help="Use linear quadratic schedule for flow matching." "Following MovieGen (https://ai.meta.com/static-resource/movie-gen-research-paper)", ) group.add_argument( "--linear-schedule-end", type=int, default=25, help="End step for linear quadratic schedule for flow matching.", ) return parser def add_inference_args(parser: argparse.ArgumentParser): group = parser.add_argument_group(title="Inference args") # ======================== Model loads ======================== group.add_argument( "--model-base", type=str, default=".", help="Root path of all the models, including t2v models and extra models.", ) group.add_argument( "--dit-weight", type=str, default="./hunyuan-video-t2v-720p/transformers/mp_rank_00_model_states.pt", help="Path to the HunyuanVideo model. If None, search the model in the args.model_root." "1. If it is a file, load the model directly." "2. If it is a directory, search the model in the directory. Support two types of models: " "1) named `pytorch_model_*.pt`" "2) named `*_model_states.pt`, where * can be `mp_rank_00`.", ) group.add_argument( "--model-resolution", type=str, default="540p", choices=["540p", "720p"], help="Root path of all the models, including t2v models and extra models.", ) group.add_argument( "--load-key", type=str, default="module", help="Key to load the model states. 'module' for the main model, 'ema' for the EMA model.", ) group.add_argument( "--use-cpu-offload", action="store_true", help="Use CPU offload for the model load.", ) # ======================== Inference general setting ======================== group.add_argument( "--batch-size", type=int, default=1, help="Batch size for inference and evaluation.", ) group.add_argument( "--infer-steps", type=int, default=50, help="Number of denoising steps for inference.", ) group.add_argument( "--disable-autocast", action="store_true", help="Disable autocast for denoising loop and vae decoding in pipeline sampling.", ) group.add_argument( "--save-path", type=str, default="./results", help="Path to save the generated samples.", ) group.add_argument( "--save-path-suffix", type=str, default="", help="Suffix for the directory of saved samples.", ) group.add_argument( "--name-suffix", type=str, default="", help="Suffix for the names of saved samples.", ) group.add_argument( "--num-videos", type=int, default=1, help="Number of videos to generate for each prompt.", ) # ---sample size--- group.add_argument( "--video-size", type=int, nargs="+", default=(720, 1280), help="Video size for training. If a single value is provided, it will be used for both height " "and width. If two values are provided, they will be used for height and width " "respectively.", ) group.add_argument( "--video-length", type=int, default=129, help="How many frames to sample from a video. if using 3d vae, the number should be 4n+1", ) # --- prompt --- group.add_argument( "--prompt", type=str, default=None, help="Prompt for sampling during evaluation.", ) group.add_argument( "--seed-type", type=str, default="auto", choices=["file", "random", "fixed", "auto"], help="Seed type for evaluation. If file, use the seed from the CSV file. If random, generate a " "random seed. If fixed, use the fixed seed given by `--seed`. If auto, `csv` will use the " "seed column if available, otherwise use the fixed `seed` value. `prompt` will use the " "fixed `seed` value.", ) group.add_argument("--seed", type=int, default=None, help="Seed for evaluation.") # Classifier-Free Guidance group.add_argument( "--neg-prompt", type=str, default=None, help="Negative prompt for sampling." ) group.add_argument( "--cfg-scale", type=float, default=1.0, help="Classifier free guidance scale." ) group.add_argument( "--embedded-cfg-scale", type=float, default=6.0, help="Embeded classifier free guidance scale.", ) group.add_argument( "--reproduce", action="store_true", help="Enable reproducibility by setting random seeds and deterministic algorithms.", ) return parser def add_parallel_args(parser: argparse.ArgumentParser): group = parser.add_argument_group(title="Parallel args") # ======================== Model loads ======================== group.add_argument( "--ulysses-degree", type=int, default=1, help="Ulysses degree.", ) group.add_argument( "--ring-degree", type=int, default=1, help="Ulysses degree.", ) return parser def sanity_check_args(args): # VAE channels vae_pattern = r"\d{2,3}-\d{1,2}c-\w+" if not re.match(vae_pattern, args.vae): raise ValueError( f"Invalid VAE model: {args.vae}. Must be in the format of '{vae_pattern}'." ) vae_channels = int(args.vae.split("-")[1][:-1]) if args.latent_channels is None: args.latent_channels = vae_channels if vae_channels != args.latent_channels: raise ValueError( f"Latent channels ({args.latent_channels}) must match the VAE channels ({vae_channels})." ) return args