File size: 7,791 Bytes
f08eddf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
from typing import Optional

from einops import rearrange
import torch
import torch.nn as nn

from .activation_layers import get_activation_layer
from .attenion import attention
from .norm_layers import get_norm_layer
from .embed_layers import TimestepEmbedder, TextProjection
from .attenion import attention
from .mlp_layers import MLP
from .modulate_layers import modulate, apply_gate


class IndividualTokenRefinerBlock(nn.Module):
    def __init__(
        self,
        hidden_size,
        heads_num,
        mlp_width_ratio: str = 4.0,
        mlp_drop_rate: float = 0.0,
        act_type: str = "silu",
        qk_norm: bool = False,
        qk_norm_type: str = "layer",
        qkv_bias: bool = True,
        dtype: Optional[torch.dtype] = None,
        device: Optional[torch.device] = None,
    ):
        factory_kwargs = {"device": device, "dtype": dtype}
        super().__init__()
        self.heads_num = heads_num
        head_dim = hidden_size // heads_num
        mlp_hidden_dim = int(hidden_size * mlp_width_ratio)

        self.norm1 = nn.LayerNorm(
            hidden_size, elementwise_affine=True, eps=1e-6, **factory_kwargs
        )
        self.self_attn_qkv = nn.Linear(
            hidden_size, hidden_size * 3, bias=qkv_bias, **factory_kwargs
        )
        qk_norm_layer = get_norm_layer(qk_norm_type)
        self.self_attn_q_norm = (
            qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs)
            if qk_norm
            else nn.Identity()
        )
        self.self_attn_k_norm = (
            qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs)
            if qk_norm
            else nn.Identity()
        )
        self.self_attn_proj = nn.Linear(
            hidden_size, hidden_size, bias=qkv_bias, **factory_kwargs
        )

        self.norm2 = nn.LayerNorm(
            hidden_size, elementwise_affine=True, eps=1e-6, **factory_kwargs
        )
        act_layer = get_activation_layer(act_type)
        self.mlp = MLP(
            in_channels=hidden_size,
            hidden_channels=mlp_hidden_dim,
            act_layer=act_layer,
            drop=mlp_drop_rate,
            **factory_kwargs,
        )

        self.adaLN_modulation = nn.Sequential(
            act_layer(),
            nn.Linear(hidden_size, 2 * hidden_size, bias=True, **factory_kwargs),
        )
        # Zero-initialize the modulation
        nn.init.zeros_(self.adaLN_modulation[1].weight)
        nn.init.zeros_(self.adaLN_modulation[1].bias)

    def forward(
        self,
        x: torch.Tensor,
        c: torch.Tensor,  # timestep_aware_representations + context_aware_representations
        attn_mask: torch.Tensor = None,
    ):
        gate_msa, gate_mlp = self.adaLN_modulation(c).chunk(2, dim=1)

        norm_x = self.norm1(x)
        qkv = self.self_attn_qkv(norm_x)
        q, k, v = rearrange(qkv, "B L (K H D) -> K B L H D", K=3, H=self.heads_num)
        # Apply QK-Norm if needed
        q = self.self_attn_q_norm(q).to(v)
        k = self.self_attn_k_norm(k).to(v)

        # Self-Attention
        attn = attention(q, k, v, mode="torch", attn_mask=attn_mask)

        x = x + apply_gate(self.self_attn_proj(attn), gate_msa)

        # FFN Layer
        x = x + apply_gate(self.mlp(self.norm2(x)), gate_mlp)

        return x


class IndividualTokenRefiner(nn.Module):
    def __init__(
        self,
        hidden_size,
        heads_num,
        depth,
        mlp_width_ratio: float = 4.0,
        mlp_drop_rate: float = 0.0,
        act_type: str = "silu",
        qk_norm: bool = False,
        qk_norm_type: str = "layer",
        qkv_bias: bool = True,
        dtype: Optional[torch.dtype] = None,
        device: Optional[torch.device] = None,
    ):
        factory_kwargs = {"device": device, "dtype": dtype}
        super().__init__()
        self.blocks = nn.ModuleList(
            [
                IndividualTokenRefinerBlock(
                    hidden_size=hidden_size,
                    heads_num=heads_num,
                    mlp_width_ratio=mlp_width_ratio,
                    mlp_drop_rate=mlp_drop_rate,
                    act_type=act_type,
                    qk_norm=qk_norm,
                    qk_norm_type=qk_norm_type,
                    qkv_bias=qkv_bias,
                    **factory_kwargs,
                )
                for _ in range(depth)
            ]
        )

    def forward(
        self,
        x: torch.Tensor,
        c: torch.LongTensor,
        mask: Optional[torch.Tensor] = None,
    ):
        self_attn_mask = None
        if mask is not None:
            batch_size = mask.shape[0]
            seq_len = mask.shape[1]
            mask = mask.to(x.device)
            # batch_size x 1 x seq_len x seq_len
            self_attn_mask_1 = mask.view(batch_size, 1, 1, seq_len).repeat(
                1, 1, seq_len, 1
            )
            # batch_size x 1 x seq_len x seq_len
            self_attn_mask_2 = self_attn_mask_1.transpose(2, 3)
            # batch_size x 1 x seq_len x seq_len, 1 for broadcasting of heads_num
            self_attn_mask = (self_attn_mask_1 & self_attn_mask_2).bool()
            # avoids self-attention weight being NaN for padding tokens
            self_attn_mask[:, :, :, 0] = True

        for block in self.blocks:
            x = block(x, c, self_attn_mask)
        return x


class SingleTokenRefiner(nn.Module):
    """
    A single token refiner block for llm text embedding refine.
    """
    def __init__(
        self,
        in_channels,
        hidden_size,
        heads_num,
        depth,
        mlp_width_ratio: float = 4.0,
        mlp_drop_rate: float = 0.0,
        act_type: str = "silu",
        qk_norm: bool = False,
        qk_norm_type: str = "layer",
        qkv_bias: bool = True,
        attn_mode: str = "torch",
        dtype: Optional[torch.dtype] = None,
        device: Optional[torch.device] = None,
    ):
        factory_kwargs = {"device": device, "dtype": dtype}
        super().__init__()
        self.attn_mode = attn_mode
        assert self.attn_mode == "torch", "Only support 'torch' mode for token refiner."

        self.input_embedder = nn.Linear(
            in_channels, hidden_size, bias=True, **factory_kwargs
        )

        act_layer = get_activation_layer(act_type)
        # Build timestep embedding layer
        self.t_embedder = TimestepEmbedder(hidden_size, act_layer, **factory_kwargs)
        # Build context embedding layer
        self.c_embedder = TextProjection(
            in_channels, hidden_size, act_layer, **factory_kwargs
        )

        self.individual_token_refiner = IndividualTokenRefiner(
            hidden_size=hidden_size,
            heads_num=heads_num,
            depth=depth,
            mlp_width_ratio=mlp_width_ratio,
            mlp_drop_rate=mlp_drop_rate,
            act_type=act_type,
            qk_norm=qk_norm,
            qk_norm_type=qk_norm_type,
            qkv_bias=qkv_bias,
            **factory_kwargs,
        )

    def forward(
        self,
        x: torch.Tensor,
        t: torch.LongTensor,
        mask: Optional[torch.LongTensor] = None,
    ):
        timestep_aware_representations = self.t_embedder(t)

        if mask is None:
            context_aware_representations = x.mean(dim=1)
        else:
            mask_float = mask.float().unsqueeze(-1)  # [b, s1, 1]
            context_aware_representations = (x * mask_float).sum(
                dim=1
            ) / mask_float.sum(dim=1)
        context_aware_representations = self.c_embedder(context_aware_representations)
        c = timestep_aware_representations + context_aware_representations

        x = self.input_embedder(x)

        x = self.individual_token_refiner(x, c, mask)

        return x