import os import torch import torch.nn as nn from torch.nn import functional as F def get_fp_maxval(bits=8, mantissa_bit=3, sign_bits=1): _bits = torch.tensor(bits) _mantissa_bit = torch.tensor(mantissa_bit) _sign_bits = torch.tensor(sign_bits) M = torch.clamp(torch.round(_mantissa_bit), 1, _bits - _sign_bits) E = _bits - _sign_bits - M bias = 2 ** (E - 1) - 1 mantissa = 1 for i in range(mantissa_bit - 1): mantissa += 1 / (2 ** (i+1)) maxval = mantissa * 2 ** (2**E - 1 - bias) return maxval def quantize_to_fp8(x, bits=8, mantissa_bit=3, sign_bits=1): """ Default is E4M3. """ bits = torch.tensor(bits) mantissa_bit = torch.tensor(mantissa_bit) sign_bits = torch.tensor(sign_bits) M = torch.clamp(torch.round(mantissa_bit), 1, bits - sign_bits) E = bits - sign_bits - M bias = 2 ** (E - 1) - 1 mantissa = 1 for i in range(mantissa_bit - 1): mantissa += 1 / (2 ** (i+1)) maxval = mantissa * 2 ** (2**E - 1 - bias) minval = - maxval minval = - maxval if sign_bits == 1 else torch.zeros_like(maxval) input_clamp = torch.min(torch.max(x, minval), maxval) log_scales = torch.clamp((torch.floor(torch.log2(torch.abs(input_clamp)) + bias)).detach(), 1.0) log_scales = 2.0 ** (log_scales - M - bias.type(x.dtype)) # dequant qdq_out = torch.round(input_clamp / log_scales) * log_scales return qdq_out, log_scales def fp8_tensor_quant(x, scale, bits=8, mantissa_bit=3, sign_bits=1): for i in range(len(x.shape) - 1): scale = scale.unsqueeze(-1) new_x = x / scale quant_dequant_x, log_scales = quantize_to_fp8(new_x, bits=bits, mantissa_bit=mantissa_bit, sign_bits=sign_bits) return quant_dequant_x, scale, log_scales def fp8_activation_dequant(qdq_out, scale, dtype): qdq_out = qdq_out.type(dtype) quant_dequant_x = qdq_out * scale.to(dtype) return quant_dequant_x def fp8_linear_forward(cls, original_dtype, input): weight_dtype = cls.weight.dtype ##### if cls.weight.dtype != torch.float8_e4m3fn: maxval = get_fp_maxval() scale = torch.max(torch.abs(cls.weight.flatten())) / maxval linear_weight, scale, log_scales = fp8_tensor_quant(cls.weight, scale) linear_weight = linear_weight.to(torch.float8_e4m3fn) weight_dtype = linear_weight.dtype else: scale = cls.fp8_scale.to(cls.weight.device) linear_weight = cls.weight ##### if weight_dtype == torch.float8_e4m3fn and cls.weight.sum() != 0: if True or len(input.shape) == 3: cls_dequant = fp8_activation_dequant(linear_weight, scale, original_dtype) if cls.bias != None: output = F.linear(input, cls_dequant, cls.bias) else: output = F.linear(input, cls_dequant) return output else: return cls.original_forward(input.to(original_dtype)) else: return cls.original_forward(input) def convert_fp8_linear(module, dit_weight_path, original_dtype, params_to_keep={}): setattr(module, "fp8_matmul_enabled", True) # loading fp8 mapping file fp8_map_path = dit_weight_path.replace('.pt', '_map.pt') if os.path.exists(fp8_map_path): fp8_map = torch.load(fp8_map_path, map_location=lambda storage, loc: storage) else: raise ValueError(f"Invalid fp8_map path: {fp8_map_path}.") fp8_layers = [] for key, layer in module.named_modules(): if isinstance(layer, nn.Linear) and ('double_blocks' in key or 'single_blocks' in key): fp8_layers.append(key) original_forward = layer.forward layer.weight = torch.nn.Parameter(layer.weight.to(torch.float8_e4m3fn)) setattr(layer, "fp8_scale", fp8_map[key].to(dtype=original_dtype)) setattr(layer, "original_forward", original_forward) setattr(layer, "forward", lambda input, m=layer: fp8_linear_forward(m, original_dtype, input))