from typing import Callable import torch import torch.nn as nn class ModulateDiT(nn.Module): """Modulation layer for DiT.""" def __init__( self, hidden_size: int, factor: int, act_layer: Callable, dtype=None, device=None, ): factory_kwargs = {"dtype": dtype, "device": device} super().__init__() self.act = act_layer() self.linear = nn.Linear( hidden_size, factor * hidden_size, bias=True, **factory_kwargs ) # Zero-initialize the modulation nn.init.zeros_(self.linear.weight) nn.init.zeros_(self.linear.bias) def forward(self, x: torch.Tensor) -> torch.Tensor: return self.linear(self.act(x)) def modulate(x, shift=None, scale=None): """modulate by shift and scale Args: x (torch.Tensor): input tensor. shift (torch.Tensor, optional): shift tensor. Defaults to None. scale (torch.Tensor, optional): scale tensor. Defaults to None. Returns: torch.Tensor: the output tensor after modulate. """ if scale is None and shift is None: return x elif shift is None: return x * (1 + scale.unsqueeze(1)) elif scale is None: return x + shift.unsqueeze(1) else: return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1) def apply_gate(x, gate=None, tanh=False): """AI is creating summary for apply_gate Args: x (torch.Tensor): input tensor. gate (torch.Tensor, optional): gate tensor. Defaults to None. tanh (bool, optional): whether to use tanh function. Defaults to False. Returns: torch.Tensor: the output tensor after apply gate. """ if gate is None: return x if tanh: return x * gate.unsqueeze(1).tanh() else: return x * gate.unsqueeze(1) def ckpt_wrapper(module): def ckpt_forward(*inputs): outputs = module(*inputs) return outputs return ckpt_forward