import torch import torch.nn as nn class RMSNorm(nn.Module): def __init__( self, dim: int, elementwise_affine=True, eps: float = 1e-6, device=None, dtype=None, ): """ Initialize the RMSNorm normalization layer. Args: dim (int): The dimension of the input tensor. eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6. Attributes: eps (float): A small value added to the denominator for numerical stability. weight (nn.Parameter): Learnable scaling parameter. """ factory_kwargs = {"device": device, "dtype": dtype} super().__init__() self.eps = eps if elementwise_affine: self.weight = nn.Parameter(torch.ones(dim, **factory_kwargs)) def _norm(self, x): """ Apply the RMSNorm normalization to the input tensor. Args: x (torch.Tensor): The input tensor. Returns: torch.Tensor: The normalized tensor. """ return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) def forward(self, x): """ Forward pass through the RMSNorm layer. Args: x (torch.Tensor): The input tensor. Returns: torch.Tensor: The output tensor after applying RMSNorm. """ output = self._norm(x.float()).type_as(x) if hasattr(self, "weight"): output = output * self.weight return output def get_norm_layer(norm_layer): """ Get the normalization layer. Args: norm_layer (str): The type of normalization layer. Returns: norm_layer (nn.Module): The normalization layer. """ if norm_layer == "layer": return nn.LayerNorm elif norm_layer == "rms": return RMSNorm else: raise NotImplementedError(f"Norm layer {norm_layer} is not implemented")