jcbthnflrs commited on
Commit
1f69bce
·
verified ·
1 Parent(s): 4b836aa

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +59 -154
README.md CHANGED
@@ -3,199 +3,104 @@ library_name: transformers
3
  tags:
4
  - trl
5
  - sft
 
 
6
  ---
7
 
8
- # Model Card for Model ID
9
 
10
  <!-- Provide a quick summary of what the model is/does. -->
11
-
12
-
13
 
14
  ## Model Details
15
 
16
  ### Model Description
17
 
18
- <!-- Provide a longer summary of what this model is. -->
19
-
20
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
21
 
22
- - **Developed by:** [More Information Needed]
23
- - **Funded by [optional]:** [More Information Needed]
24
- - **Shared by [optional]:** [More Information Needed]
25
- - **Model type:** [More Information Needed]
26
- - **Language(s) (NLP):** [More Information Needed]
27
- - **License:** [More Information Needed]
28
- - **Finetuned from model [optional]:** [More Information Needed]
29
 
30
- ### Model Sources [optional]
31
 
32
- <!-- Provide the basic links for the model. -->
33
-
34
- - **Repository:** [More Information Needed]
35
- - **Paper [optional]:** [More Information Needed]
36
- - **Demo [optional]:** [More Information Needed]
37
 
38
  ## Uses
39
 
40
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
41
-
42
  ### Direct Use
43
 
44
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
45
 
46
- [More Information Needed]
47
 
48
- ### Downstream Use [optional]
49
-
50
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
51
-
52
- [More Information Needed]
53
 
54
  ### Out-of-Scope Use
55
 
56
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
57
-
58
- [More Information Needed]
59
-
60
- ## Bias, Risks, and Limitations
61
-
62
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
63
-
64
- [More Information Needed]
65
-
66
- ### Recommendations
67
-
68
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
69
-
70
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
71
-
72
- ## How to Get Started with the Model
73
-
74
- Use the code below to get started with the model.
75
-
76
- [More Information Needed]
77
 
78
  ## Training Details
79
 
80
  ### Training Data
81
 
82
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
83
-
84
- [More Information Needed]
 
85
 
86
  ### Training Procedure
87
 
88
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
89
-
90
- #### Preprocessing [optional]
91
-
92
- [More Information Needed]
93
 
 
 
 
94
 
95
  #### Training Hyperparameters
96
 
97
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
98
-
99
- #### Speeds, Sizes, Times [optional]
100
-
101
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
102
-
103
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
104
 
105
  ## Evaluation
106
 
107
- <!-- This section describes the evaluation protocols and provides the results. -->
108
-
109
- ### Testing Data, Factors & Metrics
110
-
111
- #### Testing Data
112
-
113
- <!-- This should link to a Dataset Card if possible. -->
114
-
115
- [More Information Needed]
116
-
117
- #### Factors
118
-
119
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
120
-
121
- [More Information Needed]
122
-
123
- #### Metrics
124
-
125
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
126
-
127
- [More Information Needed]
128
-
129
- ### Results
130
-
131
- [More Information Needed]
132
-
133
- #### Summary
134
-
135
-
136
-
137
- ## Model Examination [optional]
138
-
139
- <!-- Relevant interpretability work for the model goes here -->
140
-
141
- [More Information Needed]
142
-
143
- ## Environmental Impact
144
-
145
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
146
-
147
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
148
-
149
- - **Hardware Type:** [More Information Needed]
150
- - **Hours used:** [More Information Needed]
151
- - **Cloud Provider:** [More Information Needed]
152
- - **Compute Region:** [More Information Needed]
153
- - **Carbon Emitted:** [More Information Needed]
154
-
155
- ## Technical Specifications [optional]
156
-
157
- ### Model Architecture and Objective
158
-
159
- [More Information Needed]
160
-
161
- ### Compute Infrastructure
162
-
163
- [More Information Needed]
164
-
165
- #### Hardware
166
-
167
- [More Information Needed]
168
-
169
- #### Software
170
-
171
- [More Information Needed]
172
-
173
- ## Citation [optional]
174
-
175
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
176
-
177
- **BibTeX:**
178
-
179
- [More Information Needed]
180
-
181
- **APA:**
182
-
183
- [More Information Needed]
184
-
185
- ## Glossary [optional]
186
-
187
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
188
-
189
- [More Information Needed]
190
-
191
- ## More Information [optional]
192
-
193
- [More Information Needed]
194
 
195
- ## Model Card Authors [optional]
196
 
197
- [More Information Needed]
198
 
199
  ## Model Card Contact
200
 
201
- [More Information Needed]
 
3
  tags:
4
  - trl
5
  - sft
6
+ - summarization
7
+ - legal-ai
8
  ---
9
 
10
+ # Model Card for Legal Document Summarizer
11
 
12
  <!-- Provide a quick summary of what the model is/does. -->
13
+ This model is fine-tuned to convert legal documents into human-readable summaries using Llama 3 8B Instruct as the base model. It was trained using QLoRA/LoRA techniques for efficient fine-tuning.
 
14
 
15
  ## Model Details
16
 
17
  ### Model Description
18
 
19
+ This is a fine-tuned version of NousResearch/Meta-Llama-3-8B-Instruct, optimized for summarizing legal documents in plain English. The model uses Parameter-Efficient Fine-Tuning (PEFT) methods, specifically LoRA, to achieve performance comparable to full fine-tuning while using significantly fewer computational resources.
 
 
20
 
21
+ - **Developed by:** [Your Username]
22
+ - **Model type:** Causal Language Model (LLaMA 3 Architecture)
23
+ - **Language(s):** English
24
+ - **License:** [Base model license applies]
25
+ - **Finetuned from model:** NousResearch/Meta-Llama-3-8B-Instruct
 
 
26
 
27
+ ### Model Sources
28
 
29
+ - **Base Model:** [NousResearch/Meta-Llama-3-8B-Instruct](https://huggingface.co/NousResearch/Meta-Llama-3-8B-Instruct)
30
+ - **Training Code:** Based on LLM Engineering Challenge
 
 
 
31
 
32
  ## Uses
33
 
 
 
34
  ### Direct Use
35
 
36
+ This model is designed for converting legal documents, terms of service, and other legal content into plain English summaries that are easier for general audiences to understand. It can be used directly through the Hugging Face API or interface.
37
 
38
+ ### Downstream Use
39
 
40
+ The model can be integrated into:
41
+ - Legal document processing systems
42
+ - Terms of service simplification tools
43
+ - Contract analysis applications
44
+ - Legal document management systems
45
 
46
  ### Out-of-Scope Use
47
 
48
+ The model should not be used as a replacement for legal advice or professional legal interpretation. It is meant to assist in understanding legal documents but not to provide legal guidance.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49
 
50
  ## Training Details
51
 
52
  ### Training Data
53
 
54
+ The model was trained on the Plain English Summary of Contracts dataset, which contains pairs of legal documents (EULA, TOS, etc.) and their natural language summaries. The dataset was split into:
55
+ - Training set: 68 examples
56
+ - Test set: 9 examples
57
+ - Validation set: 8 examples
58
 
59
  ### Training Procedure
60
 
61
+ #### Preprocessing
 
 
 
 
62
 
63
+ - Input text is formatted using a specific template following Llama 3's chat format
64
+ - Special tokens are used to mark legal document boundaries
65
+ - Maximum sequence length: 2048 tokens
66
 
67
  #### Training Hyperparameters
68
 
69
+ - **Training regime:** 4-bit quantization using QLoRA
70
+ - **Optimizer:** AdamW
71
+ - **Learning rate:** 2e-4
72
+ - **Batch size:** 1 per device
73
+ - **Training steps:** 500
74
+ - **Warmup steps:** 30
75
+ - **Evaluation steps:** 25
76
+ - **Learning rate scheduler:** Linear
77
+ - **LoRA rank (r):** 16
78
+ - **LoRA alpha:** 32
79
+ - **LoRA dropout:** 0.1
80
+
81
+ ### Hardware and Software
82
+
83
+ #### Hardware Requirements
84
+ - GPU: T4 or better
85
+ - Memory: Optimized for consumer-level resources through QLoRA
86
+
87
+ #### Software Requirements
88
+ - transformers library
89
+ - PEFT library
90
+ - bitsandbytes for quantization
91
+ - TRL for supervised fine-tuning
92
 
93
  ## Evaluation
94
 
95
+ Training metrics show:
96
+ - Starting training loss: ~1.52
97
+ - Final training loss: ~0.0006
98
+ - Final validation loss: ~2.74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99
 
100
+ ## Model Card Authors
101
 
102
+ @jcbthnflrs
103
 
104
  ## Model Card Contact
105
 
106
+ https://x.com/jcbthnflrs