Initial LunarLander model
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- lunar.zip +3 -0
- lunar/_stable_baselines3_version +1 -0
- lunar/data +94 -0
- lunar/policy.optimizer.pth +3 -0
- lunar/policy.pth +3 -0
- lunar/pytorch_variables.pth +3 -0
- lunar/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO-MLP
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 216.51 +/- 17.14
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO-MLP** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO-MLP** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f78e0495b90>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f78e0495c20>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f78e0495cb0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f78e0495d40>", "_build": "<function ActorCriticPolicy._build at 0x7f78e0495dd0>", "forward": "<function ActorCriticPolicy.forward at 0x7f78e0495e60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f78e0495ef0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f78e0495f80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f78e041c050>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f78e041c0e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f78e041c170>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f78e0466750>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652189583.6224515, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE3TWj24Lsy5LjBxucJHuziphII7Ij52OAAAgD8AAIA/zex+O48udbpjgSM4q052MxGNjjqt5Ti3AACAPwAAgD9mRSe9w90nuotIhTtYOYI4Q/UrO6DRILoAAIA/AACAP2am1b326Gi6L3aDulkvMDa7fRi7brKVOQAAgD8AAAAAvdSSPqE4kT9s1rw+XgWmvkubNT6uqS28AAAAAAAAAADNiOa+pYkuPzlvKD5MO3e+0mkMvgUwJD4AAAAAAAAAADM+1D7nJl0/9ifQPqsNmL5x3kc+0tZmPQAAAAAAAAAAM7G7vNLw3rsmb4G9jWwuvo/7A7sqs/U7AACAPwAAgD9zTzW+nGwjvA7bWTi0b9e1z5+JPZXke7cAAIA/AACAP00Gvz1cJz+6c0rpOSNoZbbC+C678/9ltQAAgD8AAIA/TQBEPRQCgbrjseu7KwynOPHzBjsFc7Q5AACAPwAAgD8mODO+8dfxPdapqzwwOGW+XN0yPX62PDwAAAAAAAAAAKaf5732CAG69urCOQZt3jbNYCs71mzjuAAAgD8AAIA/mjsGPFxHQ7oC6KM6DYoUtZjDFruc77q5AACAPwAAgD9mxLG94aCYurpS6TmjwCI42B6vOh12bLgAAIA/AACAP/qDjD6E5HI+Lbg6vrowUb7c/lA9LA6XuwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI6Etvfy4tZECUhpRSlIwBbJRN6AOMAXSUR0B6Tev6j323dX2UKGgGaAloD0MIY9NKIRALZECUhpRSlGgVTegDaBZHQHpkl1Oj7AN1fZQoaAZoCWgPQwhOmDCaFTtjQJSGlFKUaBVN6ANoFkdAenJh7E5yVHV9lChoBmgJaA9DCNL+B1irxjpAlIaUUpRoFU3oA2gWR0B6dlZwGW2PdX2UKGgGaAloD0MI2AsFbAdaYUCUhpRSlGgVTegDaBZHQHqL1t0mtyR1fZQoaAZoCWgPQwg+rg0V4/9eQJSGlFKUaBVN6ANoFkdAepuWxQizLXV9lChoBmgJaA9DCO54k98irmdAlIaUUpRoFU2XAWgWR0B6n7uG9HtndX2UKGgGaAloD0MIw2Fp4EclZECUhpRSlGgVTegDaBZHQHqwAAQxveh1fZQoaAZoCWgPQwimtz8XDaheQJSGlFKUaBVN6ANoFkdAetMdat9x63V9lChoBmgJaA9DCO0t5Xyxa1RAlIaUUpRoFU3oA2gWR0B62MU34sVddX2UKGgGaAloD0MI944aE2J6PECUhpRSlGgVTegDaBZHQHrg8zqKP4p1fZQoaAZoCWgPQwhjC0EOShdfQJSGlFKUaBVN6ANoFkdAezGn1WbPQnV9lChoBmgJaA9DCDZaDvRQFmJAlIaUUpRoFU3oA2gWR0B7MuTxG2CvdX2UKGgGaAloD0MIr5P6srT/Q0CUhpRSlGgVTegDaBZHQHs+5jtoi9t1fZQoaAZoCWgPQwjysbtASYNXQJSGlFKUaBVN6ANoFkdAe1FcNYr8SHV9lChoBmgJaA9DCJqxaDo77VdAlIaUUpRoFU3oA2gWR0B7kF3s5XEJdX2UKGgGaAloD0MIxAWgUbqtVECUhpRSlGgVTegDaBZHQHutLhegL7Z1fZQoaAZoCWgPQwjfap24HCZeQJSGlFKUaBVN6ANoFkdAe8cuctoSMHV9lChoBmgJaA9DCJvLDYa6B2BAlIaUUpRoFU3oA2gWR0B71xKwpvxZdX2UKGgGaAloD0MIJgD/lCo0V0CUhpRSlGgVTegDaBZHQHvbVTrE9+x1fZQoaAZoCWgPQwhi1ouhnP9ZQJSGlFKUaBVN6ANoFkdAe/MhLGrCFnV9lChoBmgJaA9DCHjsZ7EUiF1AlIaUUpRoFU3oA2gWR0B8AqdTYNAkdX2UKGgGaAloD0MIf4XMlUF8U0CUhpRSlGgVTegDaBZHQHwGaqCHymR1fZQoaAZoCWgPQwjshQK2gzdgQJSGlFKUaBVN6ANoFkdAfBZzasZHeHV9lChoBmgJaA9DCGsotRfRdiLAlIaUUpRoFU0mAWgWR0B8GYt6HCXQdX2UKGgGaAloD0MIKULqdvbcUkCUhpRSlGgVTegDaBZHQHw4GCVbA1x1fZQoaAZoCWgPQwhy/FBpxGZNQJSGlFKUaBVN6ANoFkdAfD25kbxVhnV9lChoBmgJaA9DCJusUQ9RlmBAlIaUUpRoFU3oA2gWR0B8RTtpmEoOdX2UKGgGaAloD0MIRL+2fnrvYUCUhpRSlGgVTegDaBZHQHxNGgam4y51fZQoaAZoCWgPQwhBgXfy6c1TQJSGlFKUaBVN6ANoFkdAfE6DAaef7XV9lChoBmgJaA9DCKlMMQfBy2NAlIaUUpRoFU3oA2gWR0B8o3+Q2dd3dX2UKGgGaAloD0MISguXVdiLYkCUhpRSlGgVTegDaBZHQHy08do371t1fZQoaAZoCWgPQwhcV8wIb3tCwJSGlFKUaBVNTQFoFkdAfO/4B3iaRnV9lChoBmgJaA9DCL7cJ0cBeEpAlIaUUpRoFU3oA2gWR0B88F9hJAdGdX2UKGgGaAloD0MIC7YRT/YoYkCUhpRSlGgVTegDaBZHQH0NhiXpnpV1fZQoaAZoCWgPQwivIqMDEgFnQJSGlFKUaBVNEQNoFkdAfRMQOFxn4HV9lChoBmgJaA9DCABxV68i3FxAlIaUUpRoFU3oA2gWR0B9NsxEfDDTdX2UKGgGaAloD0MI9MMI4dGBUkCUhpRSlGgVTegDaBZHQH07CSidrft1fZQoaAZoCWgPQwiI1/UL9m9gQJSGlFKUaBVN6ANoFkdAfWPRYA80UHV9lChoBmgJaA9DCFqBIatb0VpAlIaUUpRoFU3oA2gWR0B9Z7hUBGQTdX2UKGgGaAloD0MIRztu+F0JYUCUhpRSlGgVTegDaBZHQH14WXTmW+p1fZQoaAZoCWgPQwj0o+GUuVVQQJSGlFKUaBVN6ANoFkdAfXttoSL613V9lChoBmgJaA9DCFLRWPs7FzvAlIaUUpRoFU0hAWgWR0B9itUDMeOodX2UKGgGaAloD0MIZvUOt0MfW0CUhpRSlGgVTegDaBZHQH2Zbehwl0J1fZQoaAZoCWgPQwgl63B0FYJgQJSGlFKUaBVN6ANoFkdAfZ6J3gUDdXV9lChoBmgJaA9DCAGnd/F+ylpAlIaUUpRoFU3oA2gWR0B9pWEnLJS0dX2UKGgGaAloD0MIi6ceaXAPXECUhpRSlGgVTegDaBZHQH2sSxeLNwB1fZQoaAZoCWgPQwj9FMeBV6s6QJSGlFKUaBVN6ANoFkdAfgETewcHW3V9lChoBmgJaA9DCPFKkud6ImFAlIaUUpRoFU3oA2gWR0B+EfOGCZnddX2UKGgGaAloD0MIpfljWpv2FsCUhpRSlGgVTWYBaBZHQH4rz72tdRl1fZQoaAZoCWgPQwgSpFLsaGFXQJSGlFKUaBVN6ANoFkdAfkwXE61b7nV9lChoBmgJaA9DCFFsBU1LKFFAlIaUUpRoFU3oA2gWR0B+THiNsFdLdX2UKGgGaAloD0MIOJ7PgHrsXECUhpRSlGgVTegDaBZHQH5mhLf1pTN1fZQoaAZoCWgPQwjzWDMyyEVhQJSGlFKUaBVN6ANoFkdAfmsBX0XgtXV9lChoBmgJaA9DCOv+sRAd4FFAlIaUUpRoFU3oA2gWR0B+i56HCXQddX2UKGgGaAloD0MI6gWf5uQBOMCUhpRSlGgVTQQBaBZHQH64ZMcp9Z11fZQoaAZoCWgPQwgIxyx7EulYQJSGlFKUaBVN6ANoFkdAfrvs0HhS+HV9lChoBmgJaA9DCDYFMjuLVVhAlIaUUpRoFU3oA2gWR0B+v9KIznA7dX2UKGgGaAloD0MI2xZlNsjCW0CUhpRSlGgVTegDaBZHQH7RR4QjD9B1fZQoaAZoCWgPQwjZdtoaEdhYQJSGlFKUaBVN6ANoFkdAftTp4rz5GnV9lChoBmgJaA9DCArcupsnwGJAlIaUUpRoFU3oA2gWR0B+81P8AJb/dX2UKGgGaAloD0MIO6sF9piRYkCUhpRSlGgVTegDaBZHQH75BtLteD51fZQoaAZoCWgPQwjezOhHw8NbQJSGlFKUaBVN6ANoFkdAfwEpS75EdHV9lChoBmgJaA9DCEtWRbjJa2FAlIaUUpRoFU3oA2gWR0B/CceIVM24dX2UKGgGaAloD0MIfCdmvRj7WECUhpRSlGgVTegDaBZHQH8YzjaPCEZ1fZQoaAZoCWgPQwjPL0rQ3yZnQJSGlFKUaBVN6ANoFkdAf3fCemNzbXV9lChoBmgJaA9DCHN/9bhvQ1ZAlIaUUpRoFU3oA2gWR0B/lrUXpGF0dX2UKGgGaAloD0MIMlab/1eFRMCUhpRSlGgVTWsBaBZHQH+vkSAYpDx1fZQoaAZoCWgPQwgWbvlIygFkQJSGlFKUaBVN6ANoFkdAf7or3Cbc5HV9lChoBmgJaA9DCF7yP/k7i2FAlIaUUpRoFU3oA2gWR0B/uoqlP8AJdX2UKGgGaAloD0MIaHqJscymaECUhpRSlGgVTcQCaBZHQH/VSbDuSfV1fZQoaAZoCWgPQwgEjgQa7ANiQJSGlFKUaBVN6ANoFkdAf9akZrHlwXV9lChoBmgJaA9DCBiXqrTFUmFAlIaUUpRoFU3oA2gWR0B//sCA+Y+jdX2UKGgGaAloD0MI8fJ0rihtYECUhpRSlGgVTegDaBZHQIAWR2t+1Bt1fZQoaAZoCWgPQwjZtFII5P5aQJSGlFKUaBVN6ANoFkdAgBpDtw71ZnV9lChoBmgJaA9DCMdjBirjRyTAlIaUUpRoFU1LAWgWR0CAHsDuBtk4dX2UKGgGaAloD0MImBk2yvoaXECUhpRSlGgVTegDaBZHQIAj/IhhYvF1fZQoaAZoCWgPQwhBf6FHjKtgQJSGlFKUaBVN6ANoFkdAgCXeZgG8mXV9lChoBmgJaA9DCECgM2lTDF9AlIaUUpRoFU3oA2gWR0CANUGSpzcRdX2UKGgGaAloD0MIGAYsuQomYkCUhpRSlGgVTegDaBZHQIA701sLv1F1fZQoaAZoCWgPQwiRYKqZNbljQJSGlFKUaBVN6ANoFkdAgD+iQtBfKXV9lChoBmgJaA9DCBqiCn+Gr0dAlIaUUpRoFU0aAWgWR0CART9R77bddX2UKGgGaAloD0MIequuQzXmVUCUhpRSlGgVTegDaBZHQIBGQlByCFt1fZQoaAZoCWgPQwg7rHDLR/xdQJSGlFKUaBVN6ANoFkdAgHOJKJ2t+3V9lChoBmgJaA9DCGzoZn+gKD5AlIaUUpRoFUvEaBZHQIB9FMwlByF1fZQoaAZoCWgPQwgcQL/v3yFfQJSGlFKUaBVN6ANoFkdAgIFeglF+eHV9lChoBmgJaA9DCMe7I2O10F9AlIaUUpRoFU3oA2gWR0CAjFdQfp2VdX2UKGgGaAloD0MIrP4Iw4BFYUCUhpRSlGgVTegDaBZHQICRGFev6j51fZQoaAZoCWgPQwjSxDvAk7VjQJSGlFKUaBVN6ANoFkdAgJFFJYkmhXV9lChoBmgJaA9DCCAkC5jAA1tAlIaUUpRoFU3oA2gWR0CAnEwDeTFEdX2UKGgGaAloD0MIXHUdqin6W0CUhpRSlGgVTegDaBZHQICt9FjNILB1fZQoaAZoCWgPQwhENpAuNo0MwJSGlFKUaBVNLQFoFkdAgLiUXxe9jHV9lChoBmgJaA9DCK/sgsE1+FxAlIaUUpRoFU3oA2gWR0CAwcLLIPsidX2UKGgGaAloD0MIkj8YeG7fYECUhpRSlGgVTegDaBZHQIDFaU3XI2h1fZQoaAZoCWgPQwhm22lrREFZQJSGlFKUaBVN6ANoFkdAgM2hBJI1+HV9lChoBmgJaA9DCA3iAzv+I1pAlIaUUpRoFU3oA2gWR0CAzw+5e7cxdX2UKGgGaAloD0MI16VG6GfpW0CUhpRSlGgVTegDaBZHQIDdBBkZrHl1fZQoaAZoCWgPQwhHPUSju15jQJSGlFKUaBVN6ANoFkdAgOLcJdB0IXV9lChoBmgJaA9DCJG3XP3YkF9AlIaUUpRoFU3oA2gWR0CA7Hf642CNdX2UKGgGaAloD0MIsFbtmpA/YkCUhpRSlGgVTegDaBZHQIDta/Efkmx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
lunar.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a1380e12f938cf0efe9beb992f64c02b2a0d06456c7d5c39b2c687302f78bbf7
|
3 |
+
size 144048
|
lunar/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
lunar/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f78e0495b90>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f78e0495c20>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f78e0495cb0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f78e0495d40>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f78e0495dd0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f78e0495e60>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f78e0495ef0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f78e0495f80>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f78e041c050>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f78e041c0e0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f78e041c170>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f78e0466750>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652189583.6224515,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE3TWj24Lsy5LjBxucJHuziphII7Ij52OAAAgD8AAIA/zex+O48udbpjgSM4q052MxGNjjqt5Ti3AACAPwAAgD9mRSe9w90nuotIhTtYOYI4Q/UrO6DRILoAAIA/AACAP2am1b326Gi6L3aDulkvMDa7fRi7brKVOQAAgD8AAAAAvdSSPqE4kT9s1rw+XgWmvkubNT6uqS28AAAAAAAAAADNiOa+pYkuPzlvKD5MO3e+0mkMvgUwJD4AAAAAAAAAADM+1D7nJl0/9ifQPqsNmL5x3kc+0tZmPQAAAAAAAAAAM7G7vNLw3rsmb4G9jWwuvo/7A7sqs/U7AACAPwAAgD9zTzW+nGwjvA7bWTi0b9e1z5+JPZXke7cAAIA/AACAP00Gvz1cJz+6c0rpOSNoZbbC+C678/9ltQAAgD8AAIA/TQBEPRQCgbrjseu7KwynOPHzBjsFc7Q5AACAPwAAgD8mODO+8dfxPdapqzwwOGW+XN0yPX62PDwAAAAAAAAAAKaf5732CAG69urCOQZt3jbNYCs71mzjuAAAgD8AAIA/mjsGPFxHQ7oC6KM6DYoUtZjDFruc77q5AACAPwAAgD9mxLG94aCYurpS6TmjwCI42B6vOh12bLgAAIA/AACAP/qDjD6E5HI+Lbg6vrowUb7c/lA9LA6XuwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI6Etvfy4tZECUhpRSlIwBbJRN6AOMAXSUR0B6Tev6j323dX2UKGgGaAloD0MIY9NKIRALZECUhpRSlGgVTegDaBZHQHpkl1Oj7AN1fZQoaAZoCWgPQwhOmDCaFTtjQJSGlFKUaBVN6ANoFkdAenJh7E5yVHV9lChoBmgJaA9DCNL+B1irxjpAlIaUUpRoFU3oA2gWR0B6dlZwGW2PdX2UKGgGaAloD0MI2AsFbAdaYUCUhpRSlGgVTegDaBZHQHqL1t0mtyR1fZQoaAZoCWgPQwg+rg0V4/9eQJSGlFKUaBVN6ANoFkdAepuWxQizLXV9lChoBmgJaA9DCO54k98irmdAlIaUUpRoFU2XAWgWR0B6n7uG9HtndX2UKGgGaAloD0MIw2Fp4EclZECUhpRSlGgVTegDaBZHQHqwAAQxveh1fZQoaAZoCWgPQwimtz8XDaheQJSGlFKUaBVN6ANoFkdAetMdat9x63V9lChoBmgJaA9DCO0t5Xyxa1RAlIaUUpRoFU3oA2gWR0B62MU34sVddX2UKGgGaAloD0MI944aE2J6PECUhpRSlGgVTegDaBZHQHrg8zqKP4p1fZQoaAZoCWgPQwhjC0EOShdfQJSGlFKUaBVN6ANoFkdAezGn1WbPQnV9lChoBmgJaA9DCDZaDvRQFmJAlIaUUpRoFU3oA2gWR0B7MuTxG2CvdX2UKGgGaAloD0MIr5P6srT/Q0CUhpRSlGgVTegDaBZHQHs+5jtoi9t1fZQoaAZoCWgPQwjysbtASYNXQJSGlFKUaBVN6ANoFkdAe1FcNYr8SHV9lChoBmgJaA9DCJqxaDo77VdAlIaUUpRoFU3oA2gWR0B7kF3s5XEJdX2UKGgGaAloD0MIxAWgUbqtVECUhpRSlGgVTegDaBZHQHutLhegL7Z1fZQoaAZoCWgPQwjfap24HCZeQJSGlFKUaBVN6ANoFkdAe8cuctoSMHV9lChoBmgJaA9DCJvLDYa6B2BAlIaUUpRoFU3oA2gWR0B71xKwpvxZdX2UKGgGaAloD0MIJgD/lCo0V0CUhpRSlGgVTegDaBZHQHvbVTrE9+x1fZQoaAZoCWgPQwhi1ouhnP9ZQJSGlFKUaBVN6ANoFkdAe/MhLGrCFnV9lChoBmgJaA9DCHjsZ7EUiF1AlIaUUpRoFU3oA2gWR0B8AqdTYNAkdX2UKGgGaAloD0MIf4XMlUF8U0CUhpRSlGgVTegDaBZHQHwGaqCHymR1fZQoaAZoCWgPQwjshQK2gzdgQJSGlFKUaBVN6ANoFkdAfBZzasZHeHV9lChoBmgJaA9DCGsotRfRdiLAlIaUUpRoFU0mAWgWR0B8GYt6HCXQdX2UKGgGaAloD0MIKULqdvbcUkCUhpRSlGgVTegDaBZHQHw4GCVbA1x1fZQoaAZoCWgPQwhy/FBpxGZNQJSGlFKUaBVN6ANoFkdAfD25kbxVhnV9lChoBmgJaA9DCJusUQ9RlmBAlIaUUpRoFU3oA2gWR0B8RTtpmEoOdX2UKGgGaAloD0MIRL+2fnrvYUCUhpRSlGgVTegDaBZHQHxNGgam4y51fZQoaAZoCWgPQwhBgXfy6c1TQJSGlFKUaBVN6ANoFkdAfE6DAaef7XV9lChoBmgJaA9DCKlMMQfBy2NAlIaUUpRoFU3oA2gWR0B8o3+Q2dd3dX2UKGgGaAloD0MISguXVdiLYkCUhpRSlGgVTegDaBZHQHy08do371t1fZQoaAZoCWgPQwhcV8wIb3tCwJSGlFKUaBVNTQFoFkdAfO/4B3iaRnV9lChoBmgJaA9DCL7cJ0cBeEpAlIaUUpRoFU3oA2gWR0B88F9hJAdGdX2UKGgGaAloD0MIC7YRT/YoYkCUhpRSlGgVTegDaBZHQH0NhiXpnpV1fZQoaAZoCWgPQwivIqMDEgFnQJSGlFKUaBVNEQNoFkdAfRMQOFxn4HV9lChoBmgJaA9DCABxV68i3FxAlIaUUpRoFU3oA2gWR0B9NsxEfDDTdX2UKGgGaAloD0MI9MMI4dGBUkCUhpRSlGgVTegDaBZHQH07CSidrft1fZQoaAZoCWgPQwiI1/UL9m9gQJSGlFKUaBVN6ANoFkdAfWPRYA80UHV9lChoBmgJaA9DCFqBIatb0VpAlIaUUpRoFU3oA2gWR0B9Z7hUBGQTdX2UKGgGaAloD0MIRztu+F0JYUCUhpRSlGgVTegDaBZHQH14WXTmW+p1fZQoaAZoCWgPQwj0o+GUuVVQQJSGlFKUaBVN6ANoFkdAfXttoSL613V9lChoBmgJaA9DCFLRWPs7FzvAlIaUUpRoFU0hAWgWR0B9itUDMeOodX2UKGgGaAloD0MIZvUOt0MfW0CUhpRSlGgVTegDaBZHQH2Zbehwl0J1fZQoaAZoCWgPQwgl63B0FYJgQJSGlFKUaBVN6ANoFkdAfZ6J3gUDdXV9lChoBmgJaA9DCAGnd/F+ylpAlIaUUpRoFU3oA2gWR0B9pWEnLJS0dX2UKGgGaAloD0MIi6ceaXAPXECUhpRSlGgVTegDaBZHQH2sSxeLNwB1fZQoaAZoCWgPQwj9FMeBV6s6QJSGlFKUaBVN6ANoFkdAfgETewcHW3V9lChoBmgJaA9DCPFKkud6ImFAlIaUUpRoFU3oA2gWR0B+EfOGCZnddX2UKGgGaAloD0MIpfljWpv2FsCUhpRSlGgVTWYBaBZHQH4rz72tdRl1fZQoaAZoCWgPQwgSpFLsaGFXQJSGlFKUaBVN6ANoFkdAfkwXE61b7nV9lChoBmgJaA9DCFFsBU1LKFFAlIaUUpRoFU3oA2gWR0B+THiNsFdLdX2UKGgGaAloD0MIOJ7PgHrsXECUhpRSlGgVTegDaBZHQH5mhLf1pTN1fZQoaAZoCWgPQwjzWDMyyEVhQJSGlFKUaBVN6ANoFkdAfmsBX0XgtXV9lChoBmgJaA9DCOv+sRAd4FFAlIaUUpRoFU3oA2gWR0B+i56HCXQddX2UKGgGaAloD0MI6gWf5uQBOMCUhpRSlGgVTQQBaBZHQH64ZMcp9Z11fZQoaAZoCWgPQwgIxyx7EulYQJSGlFKUaBVN6ANoFkdAfrvs0HhS+HV9lChoBmgJaA9DCDYFMjuLVVhAlIaUUpRoFU3oA2gWR0B+v9KIznA7dX2UKGgGaAloD0MI2xZlNsjCW0CUhpRSlGgVTegDaBZHQH7RR4QjD9B1fZQoaAZoCWgPQwjZdtoaEdhYQJSGlFKUaBVN6ANoFkdAftTp4rz5GnV9lChoBmgJaA9DCArcupsnwGJAlIaUUpRoFU3oA2gWR0B+81P8AJb/dX2UKGgGaAloD0MIO6sF9piRYkCUhpRSlGgVTegDaBZHQH75BtLteD51fZQoaAZoCWgPQwjezOhHw8NbQJSGlFKUaBVN6ANoFkdAfwEpS75EdHV9lChoBmgJaA9DCEtWRbjJa2FAlIaUUpRoFU3oA2gWR0B/CceIVM24dX2UKGgGaAloD0MIfCdmvRj7WECUhpRSlGgVTegDaBZHQH8YzjaPCEZ1fZQoaAZoCWgPQwjPL0rQ3yZnQJSGlFKUaBVN6ANoFkdAf3fCemNzbXV9lChoBmgJaA9DCHN/9bhvQ1ZAlIaUUpRoFU3oA2gWR0B/lrUXpGF0dX2UKGgGaAloD0MIMlab/1eFRMCUhpRSlGgVTWsBaBZHQH+vkSAYpDx1fZQoaAZoCWgPQwgWbvlIygFkQJSGlFKUaBVN6ANoFkdAf7or3Cbc5HV9lChoBmgJaA9DCF7yP/k7i2FAlIaUUpRoFU3oA2gWR0B/uoqlP8AJdX2UKGgGaAloD0MIaHqJscymaECUhpRSlGgVTcQCaBZHQH/VSbDuSfV1fZQoaAZoCWgPQwgEjgQa7ANiQJSGlFKUaBVN6ANoFkdAf9akZrHlwXV9lChoBmgJaA9DCBiXqrTFUmFAlIaUUpRoFU3oA2gWR0B//sCA+Y+jdX2UKGgGaAloD0MI8fJ0rihtYECUhpRSlGgVTegDaBZHQIAWR2t+1Bt1fZQoaAZoCWgPQwjZtFII5P5aQJSGlFKUaBVN6ANoFkdAgBpDtw71ZnV9lChoBmgJaA9DCMdjBirjRyTAlIaUUpRoFU1LAWgWR0CAHsDuBtk4dX2UKGgGaAloD0MImBk2yvoaXECUhpRSlGgVTegDaBZHQIAj/IhhYvF1fZQoaAZoCWgPQwhBf6FHjKtgQJSGlFKUaBVN6ANoFkdAgCXeZgG8mXV9lChoBmgJaA9DCECgM2lTDF9AlIaUUpRoFU3oA2gWR0CANUGSpzcRdX2UKGgGaAloD0MIGAYsuQomYkCUhpRSlGgVTegDaBZHQIA701sLv1F1fZQoaAZoCWgPQwiRYKqZNbljQJSGlFKUaBVN6ANoFkdAgD+iQtBfKXV9lChoBmgJaA9DCBqiCn+Gr0dAlIaUUpRoFU0aAWgWR0CART9R77bddX2UKGgGaAloD0MIequuQzXmVUCUhpRSlGgVTegDaBZHQIBGQlByCFt1fZQoaAZoCWgPQwg7rHDLR/xdQJSGlFKUaBVN6ANoFkdAgHOJKJ2t+3V9lChoBmgJaA9DCGzoZn+gKD5AlIaUUpRoFUvEaBZHQIB9FMwlByF1fZQoaAZoCWgPQwgcQL/v3yFfQJSGlFKUaBVN6ANoFkdAgIFeglF+eHV9lChoBmgJaA9DCMe7I2O10F9AlIaUUpRoFU3oA2gWR0CAjFdQfp2VdX2UKGgGaAloD0MIrP4Iw4BFYUCUhpRSlGgVTegDaBZHQICRGFev6j51fZQoaAZoCWgPQwjSxDvAk7VjQJSGlFKUaBVN6ANoFkdAgJFFJYkmhXV9lChoBmgJaA9DCCAkC5jAA1tAlIaUUpRoFU3oA2gWR0CAnEwDeTFEdX2UKGgGaAloD0MIXHUdqin6W0CUhpRSlGgVTegDaBZHQICt9FjNILB1fZQoaAZoCWgPQwhENpAuNo0MwJSGlFKUaBVNLQFoFkdAgLiUXxe9jHV9lChoBmgJaA9DCK/sgsE1+FxAlIaUUpRoFU3oA2gWR0CAwcLLIPsidX2UKGgGaAloD0MIkj8YeG7fYECUhpRSlGgVTegDaBZHQIDFaU3XI2h1fZQoaAZoCWgPQwhm22lrREFZQJSGlFKUaBVN6ANoFkdAgM2hBJI1+HV9lChoBmgJaA9DCA3iAzv+I1pAlIaUUpRoFU3oA2gWR0CAzw+5e7cxdX2UKGgGaAloD0MI16VG6GfpW0CUhpRSlGgVTegDaBZHQIDdBBkZrHl1fZQoaAZoCWgPQwhHPUSju15jQJSGlFKUaBVN6ANoFkdAgOLcJdB0IXV9lChoBmgJaA9DCJG3XP3YkF9AlIaUUpRoFU3oA2gWR0CA7Hf642CNdX2UKGgGaAloD0MIsFbtmpA/YkCUhpRSlGgVTegDaBZHQIDta/Efkmx1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
lunar/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:67762d9d96c8383c3e4eb8ce9d94aa59c974c4d6251c7a79c306761bd995e288
|
3 |
+
size 84829
|
lunar/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:22118bfc1b8bf44c44fde0b2b07a9de56c25628e74452dcc876650faf8583863
|
3 |
+
size 43201
|
lunar/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
lunar/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ad6462a38d994e1bcf0e10cb881826614ca146ba1a918c47c950dc896bd63d4c
|
3 |
+
size 257095
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 216.50857606269165, "std_reward": 17.1390301895754, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-10T13:42:41.210472"}
|