jcorenday commited on
Commit
b1721b8
Β·
verified Β·
1 Parent(s): c82c874

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +252 -0
README.md ADDED
@@ -0,0 +1,252 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model:
3
+ - nbeerbower/llama-3-stella-8B
4
+ - Hastagaras/llama-3-8b-okay
5
+ - nbeerbower/llama-3-gutenberg-8B
6
+ - openchat/openchat-3.6-8b-20240522
7
+ - Kukedlc/NeuralLLaMa-3-8b-DT-v0.1
8
+ - cstr/llama3-8b-spaetzle-v20
9
+ - mlabonne/ChimeraLlama-3-8B-v3
10
+ - flammenai/Mahou-1.1-llama3-8B
11
+ - KingNish/KingNish-Llama3-8b
12
+ license: other
13
+ tags:
14
+ - merge
15
+ - mergekit
16
+ - lazymergekit
17
+ - autoquant
18
+ - exl2
19
+ model-index:
20
+ - name: Daredevil-8B
21
+ results:
22
+ - task:
23
+ type: text-generation
24
+ name: Text Generation
25
+ dataset:
26
+ name: AI2 Reasoning Challenge (25-Shot)
27
+ type: ai2_arc
28
+ config: ARC-Challenge
29
+ split: test
30
+ args:
31
+ num_few_shot: 25
32
+ metrics:
33
+ - type: acc_norm
34
+ value: 68.86
35
+ name: normalized accuracy
36
+ source:
37
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Daredevil-8B
38
+ name: Open LLM Leaderboard
39
+ - task:
40
+ type: text-generation
41
+ name: Text Generation
42
+ dataset:
43
+ name: HellaSwag (10-Shot)
44
+ type: hellaswag
45
+ split: validation
46
+ args:
47
+ num_few_shot: 10
48
+ metrics:
49
+ - type: acc_norm
50
+ value: 84.5
51
+ name: normalized accuracy
52
+ source:
53
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Daredevil-8B
54
+ name: Open LLM Leaderboard
55
+ - task:
56
+ type: text-generation
57
+ name: Text Generation
58
+ dataset:
59
+ name: MMLU (5-Shot)
60
+ type: cais/mmlu
61
+ config: all
62
+ split: test
63
+ args:
64
+ num_few_shot: 5
65
+ metrics:
66
+ - type: acc
67
+ value: 69.24
68
+ name: accuracy
69
+ source:
70
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Daredevil-8B
71
+ name: Open LLM Leaderboard
72
+ - task:
73
+ type: text-generation
74
+ name: Text Generation
75
+ dataset:
76
+ name: TruthfulQA (0-shot)
77
+ type: truthful_qa
78
+ config: multiple_choice
79
+ split: validation
80
+ args:
81
+ num_few_shot: 0
82
+ metrics:
83
+ - type: mc2
84
+ value: 59.89
85
+ source:
86
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Daredevil-8B
87
+ name: Open LLM Leaderboard
88
+ - task:
89
+ type: text-generation
90
+ name: Text Generation
91
+ dataset:
92
+ name: Winogrande (5-shot)
93
+ type: winogrande
94
+ config: winogrande_xl
95
+ split: validation
96
+ args:
97
+ num_few_shot: 5
98
+ metrics:
99
+ - type: acc
100
+ value: 78.45
101
+ name: accuracy
102
+ source:
103
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Daredevil-8B
104
+ name: Open LLM Leaderboard
105
+ - task:
106
+ type: text-generation
107
+ name: Text Generation
108
+ dataset:
109
+ name: GSM8k (5-shot)
110
+ type: gsm8k
111
+ config: main
112
+ split: test
113
+ args:
114
+ num_few_shot: 5
115
+ metrics:
116
+ - type: acc
117
+ value: 73.54
118
+ name: accuracy
119
+ source:
120
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Daredevil-8B
121
+ name: Open LLM Leaderboard
122
+ ---
123
+
124
+ # Daredevil-8B
125
+
126
+ ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/gFEhcIDSKa3AWpkNfH91q.jpeg)
127
+
128
+ Daredevil-8B is a mega-merge designed to maximize MMLU. On 27 May 24, it is the Llama 3 8B model with the **highest MMLU score**.
129
+ From my experience, a high MMLU score is all you need with Llama 3 models.
130
+
131
+ It is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
132
+ * [nbeerbower/llama-3-stella-8B](https://huggingface.co/nbeerbower/llama-3-stella-8B)
133
+ * [Hastagaras/llama-3-8b-okay](https://huggingface.co/Hastagaras/llama-3-8b-okay)
134
+ * [nbeerbower/llama-3-gutenberg-8B](https://huggingface.co/nbeerbower/llama-3-gutenberg-8B)
135
+ * [openchat/openchat-3.6-8b-20240522](https://huggingface.co/openchat/openchat-3.6-8b-20240522)
136
+ * [Kukedlc/NeuralLLaMa-3-8b-DT-v0.1](https://huggingface.co/Kukedlc/NeuralLLaMa-3-8b-DT-v0.1)
137
+ * [cstr/llama3-8b-spaetzle-v20](https://huggingface.co/cstr/llama3-8b-spaetzle-v20)
138
+ * [mlabonne/ChimeraLlama-3-8B-v3](https://huggingface.co/mlabonne/ChimeraLlama-3-8B-v3)
139
+ * [flammenai/Mahou-1.1-llama3-8B](https://huggingface.co/flammenai/Mahou-1.1-llama3-8B)
140
+ * [KingNish/KingNish-Llama3-8b](https://huggingface.co/KingNish/KingNish-Llama3-8b)
141
+
142
+ Thanks to nbeerbower, Hastagaras, openchat, Kukedlc, cstr, flammenai, and KingNish for their merges. Special thanks to Charles Goddard and Arcee.ai for MergeKit.
143
+
144
+ ## πŸ”Ž Applications
145
+
146
+ You can use it as an improved version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct).
147
+
148
+ This is a censored model. For an uncensored version, see [mlabonne/Daredevil-8B-abliterated](https://huggingface.co/mlabonne/Daredevil-8B-abliterated).
149
+
150
+ Tested on LM Studio using the "Llama 3" preset.
151
+
152
+ ## ⚑ Quantization
153
+
154
+ * **GGUF**: https://huggingface.co/mlabonne/Daredevil-8B-GGUF
155
+
156
+ ## πŸ† Evaluation
157
+
158
+ ### Open LLM Leaderboard
159
+
160
+ Daredevil-8B is the best-performing 8B model on the Open LLM Leaderboard in terms of MMLU score (27 May 24).
161
+
162
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/xFKhGdSaIxL9_tcJPhM5w.png)
163
+
164
+ ### Nous
165
+
166
+ Daredevil-8B is the best-performing 8B model on Nous' benchmark suite (evaluation performed using [LLM AutoEval](https://github.com/mlabonne/llm-autoeval), 27 May 24). See the entire leaderboard [here](https://huggingface.co/spaces/mlabonne/Yet_Another_LLM_Leaderboard).
167
+
168
+ | Model | Average | AGIEval | GPT4All | TruthfulQA | Bigbench |
169
+ |---|---:|---:|---:|---:|---:|
170
+ | [**mlabonne/Daredevil-8B**](https://huggingface.co/mlabonne/Daredevil-8B) [πŸ“„](https://gist.github.com/mlabonne/080f9c5f153ea57a7ab7d932cf896f21) | **55.87** | **44.13** | **73.52** | **59.05** | **46.77** |
171
+ | [mlabonne/Daredevil-8B-abliterated](https://huggingface.co/mlabonne/Daredevil-8B-abliterated) [πŸ“„](https://gist.github.com/mlabonne/32cdd8460804662c856bcb2a20acd49e) | 55.06 | 43.29 | 73.33 | 57.47 | 46.17 |
172
+ | [mlabonne/Llama-3-8B-Instruct-abliterated-dpomix](https://huggingface.co/mlabonne/Llama-3-8B-Instruct-abliterated-dpomix) [πŸ“„](https://gist.github.com/mlabonne/d711548df70e2c04771cc68ab33fe2b9) | 52.26 | 41.6 | 69.95 | 54.22 | 43.26 |
173
+ | [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) [πŸ“„](https://gist.github.com/mlabonne/8329284d86035e6019edb11eb0933628) | 51.34 | 41.22 | 69.86 | 51.65 | 42.64 |
174
+ | [failspy/Meta-Llama-3-8B-Instruct-abliterated-v3](https://huggingface.co/failspy/Meta-Llama-3-8B-Instruct-abliterated-v3) [πŸ“„](https://gist.github.com/mlabonne/f46cce0262443365e4cce2b6fa7507fc) | 51.21 | 40.23 | 69.5 | 52.44 | 42.69 |
175
+ | [mlabonne/OrpoLlama-3-8B](https://huggingface.co/mlabonne/OrpoLlama-3-8B) [πŸ“„](https://gist.github.com/mlabonne/22896a1ae164859931cc8f4858c97f6f) | 48.63 | 34.17 | 70.59 | 52.39 | 37.36 |
176
+ | [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) [πŸ“„](https://gist.github.com/mlabonne/616b6245137a9cfc4ea80e4c6e55d847) | 45.42 | 31.1 | 69.95 | 43.91 | 36.7 |
177
+
178
+ ## 🌳 Model family tree
179
+
180
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/ekwRGgnjzEOyprT8sEBFt.png)
181
+
182
+ ## 🧩 Configuration
183
+
184
+ ```yaml
185
+ models:
186
+ - model: NousResearch/Meta-Llama-3-8B
187
+ # No parameters necessary for base model
188
+ - model: nbeerbower/llama-3-stella-8B
189
+ parameters:
190
+ density: 0.6
191
+ weight: 0.16
192
+ - model: Hastagaras/llama-3-8b-okay
193
+ parameters:
194
+ density: 0.56
195
+ weight: 0.1
196
+ - model: nbeerbower/llama-3-gutenberg-8B
197
+ parameters:
198
+ density: 0.6
199
+ weight: 0.18
200
+ - model: openchat/openchat-3.6-8b-20240522
201
+ parameters:
202
+ density: 0.56
203
+ weight: 0.12
204
+ - model: Kukedlc/NeuralLLaMa-3-8b-DT-v0.1
205
+ parameters:
206
+ density: 0.58
207
+ weight: 0.18
208
+ - model: cstr/llama3-8b-spaetzle-v20
209
+ parameters:
210
+ density: 0.56
211
+ weight: 0.08
212
+ - model: mlabonne/ChimeraLlama-3-8B-v3
213
+ parameters:
214
+ density: 0.56
215
+ weight: 0.08
216
+ - model: flammenai/Mahou-1.1-llama3-8B
217
+ parameters:
218
+ density: 0.55
219
+ weight: 0.05
220
+ - model: KingNish/KingNish-Llama3-8b
221
+ parameters:
222
+ density: 0.55
223
+ weight: 0.05
224
+ merge_method: dare_ties
225
+ base_model: NousResearch/Meta-Llama-3-8B
226
+ dtype: bfloat16
227
+ ```
228
+
229
+ ## πŸ’» Usage
230
+
231
+ ```python
232
+ !pip install -qU transformers accelerate
233
+
234
+ from transformers import AutoTokenizer
235
+ import transformers
236
+ import torch
237
+
238
+ model = "mlabonne/Daredevil-8B"
239
+ messages = [{"role": "user", "content": "What is a large language model?"}]
240
+
241
+ tokenizer = AutoTokenizer.from_pretrained(model)
242
+ prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
243
+ pipeline = transformers.pipeline(
244
+ "text-generation",
245
+ model=model,
246
+ torch_dtype=torch.bfloat16,
247
+ device_map="auto",
248
+ )
249
+
250
+ outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
251
+ print(outputs[0]["generated_text"])
252
+ ```