Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +96 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 267.89 +/- 18.75
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f83500c6f70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f83500c7040>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f83500c70d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f83500c7160>", "_build": "<function ActorCriticPolicy._build at 0x7f83500c71f0>", "forward": "<function ActorCriticPolicy.forward at 0x7f83500c7280>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f83500c7310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f83500c73a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f83500c7430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f83500c74c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f83500c7550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f83500c75e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f83500c8440>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682413511165463774, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANqASz70H5s/cYiuPi9ODb+O3l4+bjKAPQAAAAAAAAAAzazxvBS8uroPqaG1HtmzsAVNxzfjtqs0AACAPwAAgD/NRRE9v1xyPuJF9r1ty4++/fMLvdb4hj0AAAAAAAAAAGbfXL1oJpI+zfhtPoVInr6bk5A9KEQKPQAAAAAAAAAAzTyFPSkYdLo4snu6n2QWNuomQLokQJM5AACAPwAAAAAmsCm+Pc45P9CsHj4xlLi+PaSJvXh1hz0AAAAAAAAAAJr1DD3PXBy886BVvFpFyb03MAm9mOqcvgAAgD8AAIA/zTRUPbugyj5TM8+8WTuQvje9mz3Cj1S8AAAAAAAAAAAzThY9PPVfPdhtnb1VH0S+DxCCvdVgXz0AAAAAAAAAAJq7Kz09N0q7dZldvDIoiDzxG+k8q3NqvQAAgD8AAIA/mig+Pq9erz6vIyq+0haPvnKnEj0ULCO8AAAAAAAAAAAAqKY8dC+IPYqJk7yfafq9hsFvui99xTwAAAAAAAAAAPORCT7/rCo+RptXvg+hhL43ZiK9XLC6PAAAAAAAAAAAM/pTPVLw+Ln1FVU1pk8TMO1SU7sKrXi0AACAPwAAgD/av8W9/igCP7KRQD5kB92+wY+0PGblzj0AAAAAAAAAAIUahL7tPJE/H4Uwvk2ehr7GMt++kg/MvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVYhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIUrmJWpojcUCUhpRSlIwBbJRNDQGMAXSUR0CYiEqrzXjEdX2UKGgGaAloD0MICaUvhJxXXUCUhpRSlGgVTegDaBZHQJiJMeJYT0x1fZQoaAZoCWgPQwit/DIYo5JvQJSGlFKUaBVNHAFoFkdAmImFkH2RJXV9lChoBmgJaA9DCPZf56aNCnJAlIaUUpRoFU0QAWgWR0CYip05EMLGdX2UKGgGaAloD0MImSoYldQob0CUhpRSlGgVTREBaBZHQJiL/fzjFQ51fZQoaAZoCWgPQwh/+zpwzgRvQJSGlFKUaBVL8mgWR0CYjBLBKtgbdX2UKGgGaAloD0MImN2Th4XJbkCUhpRSlGgVTQsBaBZHQJiMft4RmK91fZQoaAZoCWgPQwiFfTuJCJ5uQJSGlFKUaBVNDQFoFkdAmI6ahlDneXV9lChoBmgJaA9DCMpS6/1G+XBAlIaUUpRoFUvkaBZHQJiOpwNsnAt1fZQoaAZoCWgPQwgaMEj69ENzQJSGlFKUaBVNKQFoFkdAmJDSHmA9V3V9lChoBmgJaA9DCOEH51NHc3JAlIaUUpRoFU0iAWgWR0CYkSliBoVVdX2UKGgGaAloD0MIB0XzABY6ckCUhpRSlGgVTRgBaBZHQJiRTo1UEPl1fZQoaAZoCWgPQwg4h2u1R65xQJSGlFKUaBVNHwFoFkdAmJGRw2l2vHV9lChoBmgJaA9DCE9Xdyw24m1AlIaUUpRoFUvqaBZHQJiR21MM7U51fZQoaAZoCWgPQwhszOuIA6JxQJSGlFKUaBVNBgFoFkdAmJHc2rGR3nV9lChoBmgJaA9DCJ4MjpJXyXBAlIaUUpRoFU0pAWgWR0CYlHKxcE/0dX2UKGgGaAloD0MIW80643vwcUCUhpRSlGgVTTgBaBZHQJiUlYoy9El1fZQoaAZoCWgPQwhGW5VE9sxyQJSGlFKUaBVL7WgWR0CYlJZtvXK9dX2UKGgGaAloD0MIon2s4Lc1R0CUhpRSlGgVS8doFkdAmJSsFyJbdXV9lChoBmgJaA9DCGdhTzv8NnJAlIaUUpRoFU0dAWgWR0CYlO9UCJXRdX2UKGgGaAloD0MIH2XEBWA8ckCUhpRSlGgVTSQBaBZHQJiVfXSSeRR1fZQoaAZoCWgPQwj84ee/B1NxQJSGlFKUaBVL7mgWR0CYlfiyprDZdX2UKGgGaAloD0MIKnPzjSgzcECUhpRSlGgVTQMBaBZHQJiXP2WY4Q11fZQoaAZoCWgPQwh/UBcpFNpuQJSGlFKUaBVNAQFoFkdAmJjOrp7kXHV9lChoBmgJaA9DCIcW2c53o25AlIaUUpRoFU0CAWgWR0CYmN5xzaK2dX2UKGgGaAloD0MIknajj7lKckCUhpRSlGgVS/1oFkdAmJpPxQSBb3V9lChoBmgJaA9DCFbvcDv0pXFAlIaUUpRoFU0YAWgWR0CYmvQID5j6dX2UKGgGaAloD0MI+gj84edockCUhpRSlGgVTRsBaBZHQJibZDohY/51fZQoaAZoCWgPQwjf4uE9xw1zQJSGlFKUaBVNEQFoFkdAmJuFs+FDfHV9lChoBmgJaA9DCCfZ6nKKXXFAlIaUUpRoFU0YAWgWR0CYm8HG0eEJdX2UKGgGaAloD0MI5BWInpTGcECUhpRSlGgVTSABaBZHQJibxzOoo/l1fZQoaAZoCWgPQwg+6xotR3lyQJSGlFKUaBVL+WgWR0CYnMcfvF3qdX2UKGgGaAloD0MIowc+ButecUCUhpRSlGgVTRYBaBZHQJido8Md92J1fZQoaAZoCWgPQwhSgCiY8QZxQJSGlFKUaBVNFwFoFkdAmJ2xR64Ue3V9lChoBmgJaA9DCFX2XRF8n29AlIaUUpRoFU0DAWgWR0CYndjR2KVIdX2UKGgGaAloD0MIt18+WXE3ckCUhpRSlGgVS/ZoFkdAmJ3euJUHZHV9lChoBmgJaA9DCHgnnx7bw29AlIaUUpRoFU0lAWgWR0CYnfyN4qwydX2UKGgGaAloD0MIMgG/RpIGckCUhpRSlGgVS+hoFkdAmJ5igXdj5XV9lChoBmgJaA9DCKIm+nyU2G9AlIaUUpRoFU0wAWgWR0CYnpQHiWE9dX2UKGgGaAloD0MIIF9CBYfdb0CUhpRSlGgVTQcBaBZHQJigRHG0eEJ1fZQoaAZoCWgPQwgB+n3/JudxQJSGlFKUaBVNOwFoFkdAmLH64c3l0nV9lChoBmgJaA9DCFLwFHIlz21AlIaUUpRoFU0TAWgWR0CYsk8W9DhMdX2UKGgGaAloD0MI24ZREDwAc0CUhpRSlGgVS/BoFkdAmLKS7TUiIXV9lChoBmgJaA9DCLX/AdbqxXBAlIaUUpRoFU0gAWgWR0CYs17ALy+YdX2UKGgGaAloD0MIDoXP1sGBcUCUhpRSlGgVTRYBaBZHQJizk7W/ag51fZQoaAZoCWgPQwiSsG8nkdpxQJSGlFKUaBVNDwFoFkdAmLOZbUwztXV9lChoBmgJaA9DCN1e0hhttnBAlIaUUpRoFUv/aBZHQJi0PhWHUMJ1fZQoaAZoCWgPQwgyIHu9u0VxQJSGlFKUaBVNOwFoFkdAmLShvR7Z4HV9lChoBmgJaA9DCKsgBrp20HBAlIaUUpRoFUvzaBZHQJi04KSgXdl1fZQoaAZoCWgPQwhm2ZPAZj9uQJSGlFKUaBVNEAFoFkdAmLV7Q5WBBnV9lChoBmgJaA9DCAge3941kXFAlIaUUpRoFUv5aBZHQJi1zd+G47R1fZQoaAZoCWgPQwhzLO+qx9JwQJSGlFKUaBVNAwFoFkdAmLXbN8ma6XV9lChoBmgJaA9DCPgb7bihQ3JAlIaUUpRoFU0ZAWgWR0CYtgTlkpZwdX2UKGgGaAloD0MIeqcC7vkQcUCUhpRSlGgVTSUBaBZHQJi2Kc8Tzup1fZQoaAZoCWgPQwhfQgWHF49zQJSGlFKUaBVNRAFoFkdAmLa/rfLs8nV9lChoBmgJaA9DCOZ1xCEbQHBAlIaUUpRoFU0PAWgWR0CYt/y9mHxjdX2UKGgGaAloD0MIyw9c5YmsckCUhpRSlGgVTQABaBZHQJi443PzFuN1fZQoaAZoCWgPQwiCGylbJLNtQJSGlFKUaBVNBgFoFkdAmLmToZAIIHV9lChoBmgJaA9DCP8Iw4BlsnFAlIaUUpRoFUv3aBZHQJi52OmzjWF1fZQoaAZoCWgPQwjFH0Wd+VdwQJSGlFKUaBVNHwFoFkdAmLoLG7z06HV9lChoBmgJaA9DCPK0/MBV4W5AlIaUUpRoFUv5aBZHQJi6GIbfgrJ1fZQoaAZoCWgPQwhOYaWCSvpyQJSGlFKUaBVNDwFoFkdAmLqtGI9C/3V9lChoBmgJaA9DCGTOM/Yll29AlIaUUpRoFUv/aBZHQJi60S5AhSt1fZQoaAZoCWgPQwh8e9egr9JxQJSGlFKUaBVL+GgWR0CYuz6QeV9ndX2UKGgGaAloD0MIDJQUWAANcUCUhpRSlGgVS+1oFkdAmLwj0th/iHV9lChoBmgJaA9DCLPr3opEzm9AlIaUUpRoFU0CAWgWR0CYvI2vStvGdX2UKGgGaAloD0MIV5boLLOtcECUhpRSlGgVS/1oFkdAmLzX/o7muHV9lChoBmgJaA9DCGr2QCuwrHBAlIaUUpRoFU06AWgWR0CYvP5IpYs/dX2UKGgGaAloD0MIUBiUaXS4cECUhpRSlGgVTScBaBZHQJi9T/Ot4iZ1fZQoaAZoCWgPQwhR+GwdXONwQJSGlFKUaBVNAQFoFkdAmL2tUXHim3V9lChoBmgJaA9DCEZda+8TFXBAlIaUUpRoFUv/aBZHQJi/DlMh5gR1fZQoaAZoCWgPQwh+VpkprbtzQJSGlFKUaBVLz2gWR0CYwOTZxrBTdX2UKGgGaAloD0MIUmStoZRdcUCUhpRSlGgVS/toFkdAmMH92ki2UnV9lChoBmgJaA9DCLmpgebzLXFAlIaUUpRoFU03AWgWR0CYwspSaVlgdX2UKGgGaAloD0MIpn7eVGSKcUCUhpRSlGgVTRUBaBZHQJjCy3QUpNN1fZQoaAZoCWgPQwis5jki3wNxQJSGlFKUaBVL9mgWR0CYwvivPkaNdX2UKGgGaAloD0MIBW7dzZMjcECUhpRSlGgVTTUBaBZHQJjDuhzvJBB1fZQoaAZoCWgPQwgAcsKEEYxyQJSGlFKUaBVNJQFoFkdAmMPFX7tRenV9lChoBmgJaA9DCCV5ru/DHlFAlIaUUpRoFUvGaBZHQJjEb+FUQ051fZQoaAZoCWgPQwjjcOZXcw1xQJSGlFKUaBVNDgFoFkdAmMSTHOryUnV9lChoBmgJaA9DCKiMf5+xMHBAlIaUUpRoFUvmaBZHQJjEyjoIOYp1fZQoaAZoCWgPQwisVib8UlJtQJSGlFKUaBVL/2gWR0CYxfCeEqUedX2UKGgGaAloD0MIM9/BTxy7UECUhpRSlGgVS7FoFkdAmMYblq8DjnV9lChoBmgJaA9DCAzohTvXxnFAlIaUUpRoFU1AAWgWR0CYx5b1h9b5dX2UKGgGaAloD0MIIhgHl047cECUhpRSlGgVTRoBaBZHQJjIJDu0CzV1fZQoaAZoCWgPQwjz59uCZYhyQJSGlFKUaBVL9GgWR0CYyuUd7v5QdX2UKGgGaAloD0MITIqPT4jKcECUhpRSlGgVTZQBaBZHQJjMUJgLJCB1fZQoaAZoCWgPQwhozCTqxZRwQJSGlFKUaBVL9mgWR0CYzN++ueSTdX2UKGgGaAloD0MIO8PUlrp3cUCUhpRSlGgVTQoBaBZHQJjNAwEhaDB1fZQoaAZoCWgPQwgVjErqBIJOQJSGlFKUaBVLtGgWR0CYzcb2USqVdX2UKGgGaAloD0MIWvW52soXckCUhpRSlGgVTQ4BaBZHQJjN88vEjxF1fZQoaAZoCWgPQwgbKzHPSq5uQJSGlFKUaBVNEAFoFkdAmM413MY/FHV9lChoBmgJaA9DCGUZ4ljXQnBAlIaUUpRoFU0CAWgWR0CYzmronrprdX2UKGgGaAloD0MItd/aiVI3cUCUhpRSlGgVTQsBaBZHQJjOv3M6ikB1fZQoaAZoCWgPQwjt8q0Pa5twQJSGlFKUaBVNFQFoFkdAmNBFTm4iHXV9lChoBmgJaA9DCMfxQ6UReXFAlIaUUpRoFU0iAWgWR0CY0Jn5i3G5dX2UKGgGaAloD0MIgoyACoe7cECUhpRSlGgVTSwBaBZHQJjQ5H+ZPVN1fZQoaAZoCWgPQwgZHCWvDgFzQJSGlFKUaBVNGwFoFkdAmNHxEWqLj3V9lChoBmgJaA9DCKUSntBrPWxAlIaUUpRoFU0XAWgWR0CY021rZamodX2UKGgGaAloD0MIrd7hdmhPb0CUhpRSlGgVTQ4BaBZHQJjTnrNW2gF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:93ecbce07edf23fc0eddff619482c8c6023209dee4b25c000a4e21427be2bd30
|
3 |
+
size 147355
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f83500c6f70>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f83500c7040>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f83500c70d0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f83500c7160>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f83500c71f0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f83500c7280>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f83500c7310>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f83500c73a0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f83500c7430>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f83500c74c0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f83500c7550>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f83500c75e0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f83500c8440>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1682413511165463774,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"lr_schedule": {
|
33 |
+
":type:": "<class 'function'>",
|
34 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
35 |
+
},
|
36 |
+
"_last_obs": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANqASz70H5s/cYiuPi9ODb+O3l4+bjKAPQAAAAAAAAAAzazxvBS8uroPqaG1HtmzsAVNxzfjtqs0AACAPwAAgD/NRRE9v1xyPuJF9r1ty4++/fMLvdb4hj0AAAAAAAAAAGbfXL1oJpI+zfhtPoVInr6bk5A9KEQKPQAAAAAAAAAAzTyFPSkYdLo4snu6n2QWNuomQLokQJM5AACAPwAAAAAmsCm+Pc45P9CsHj4xlLi+PaSJvXh1hz0AAAAAAAAAAJr1DD3PXBy886BVvFpFyb03MAm9mOqcvgAAgD8AAIA/zTRUPbugyj5TM8+8WTuQvje9mz3Cj1S8AAAAAAAAAAAzThY9PPVfPdhtnb1VH0S+DxCCvdVgXz0AAAAAAAAAAJq7Kz09N0q7dZldvDIoiDzxG+k8q3NqvQAAgD8AAIA/mig+Pq9erz6vIyq+0haPvnKnEj0ULCO8AAAAAAAAAAAAqKY8dC+IPYqJk7yfafq9hsFvui99xTwAAAAAAAAAAPORCT7/rCo+RptXvg+hhL43ZiK9XLC6PAAAAAAAAAAAM/pTPVLw+Ln1FVU1pk8TMO1SU7sKrXi0AACAPwAAgD/av8W9/igCP7KRQD5kB92+wY+0PGblzj0AAAAAAAAAAIUahL7tPJE/H4Uwvk2ehr7GMt++kg/MvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_episode_starts": {
|
41 |
+
":type:": "<class 'numpy.ndarray'>",
|
42 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
43 |
+
},
|
44 |
+
"_last_original_obs": null,
|
45 |
+
"_episode_num": 0,
|
46 |
+
"use_sde": false,
|
47 |
+
"sde_sample_freq": -1,
|
48 |
+
"_current_progress_remaining": -0.015808000000000044,
|
49 |
+
"_stats_window_size": 100,
|
50 |
+
"ep_info_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVYhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIUrmJWpojcUCUhpRSlIwBbJRNDQGMAXSUR0CYiEqrzXjEdX2UKGgGaAloD0MICaUvhJxXXUCUhpRSlGgVTegDaBZHQJiJMeJYT0x1fZQoaAZoCWgPQwit/DIYo5JvQJSGlFKUaBVNHAFoFkdAmImFkH2RJXV9lChoBmgJaA9DCPZf56aNCnJAlIaUUpRoFU0QAWgWR0CYip05EMLGdX2UKGgGaAloD0MImSoYldQob0CUhpRSlGgVTREBaBZHQJiL/fzjFQ51fZQoaAZoCWgPQwh/+zpwzgRvQJSGlFKUaBVL8mgWR0CYjBLBKtgbdX2UKGgGaAloD0MImN2Th4XJbkCUhpRSlGgVTQsBaBZHQJiMft4RmK91fZQoaAZoCWgPQwiFfTuJCJ5uQJSGlFKUaBVNDQFoFkdAmI6ahlDneXV9lChoBmgJaA9DCMpS6/1G+XBAlIaUUpRoFUvkaBZHQJiOpwNsnAt1fZQoaAZoCWgPQwgaMEj69ENzQJSGlFKUaBVNKQFoFkdAmJDSHmA9V3V9lChoBmgJaA9DCOEH51NHc3JAlIaUUpRoFU0iAWgWR0CYkSliBoVVdX2UKGgGaAloD0MIB0XzABY6ckCUhpRSlGgVTRgBaBZHQJiRTo1UEPl1fZQoaAZoCWgPQwg4h2u1R65xQJSGlFKUaBVNHwFoFkdAmJGRw2l2vHV9lChoBmgJaA9DCE9Xdyw24m1AlIaUUpRoFUvqaBZHQJiR21MM7U51fZQoaAZoCWgPQwhszOuIA6JxQJSGlFKUaBVNBgFoFkdAmJHc2rGR3nV9lChoBmgJaA9DCJ4MjpJXyXBAlIaUUpRoFU0pAWgWR0CYlHKxcE/0dX2UKGgGaAloD0MIW80643vwcUCUhpRSlGgVTTgBaBZHQJiUlYoy9El1fZQoaAZoCWgPQwhGW5VE9sxyQJSGlFKUaBVL7WgWR0CYlJZtvXK9dX2UKGgGaAloD0MIon2s4Lc1R0CUhpRSlGgVS8doFkdAmJSsFyJbdXV9lChoBmgJaA9DCGdhTzv8NnJAlIaUUpRoFU0dAWgWR0CYlO9UCJXRdX2UKGgGaAloD0MIH2XEBWA8ckCUhpRSlGgVTSQBaBZHQJiVfXSSeRR1fZQoaAZoCWgPQwj84ee/B1NxQJSGlFKUaBVL7mgWR0CYlfiyprDZdX2UKGgGaAloD0MIKnPzjSgzcECUhpRSlGgVTQMBaBZHQJiXP2WY4Q11fZQoaAZoCWgPQwh/UBcpFNpuQJSGlFKUaBVNAQFoFkdAmJjOrp7kXHV9lChoBmgJaA9DCIcW2c53o25AlIaUUpRoFU0CAWgWR0CYmN5xzaK2dX2UKGgGaAloD0MIknajj7lKckCUhpRSlGgVS/1oFkdAmJpPxQSBb3V9lChoBmgJaA9DCFbvcDv0pXFAlIaUUpRoFU0YAWgWR0CYmvQID5j6dX2UKGgGaAloD0MI+gj84edockCUhpRSlGgVTRsBaBZHQJibZDohY/51fZQoaAZoCWgPQwjf4uE9xw1zQJSGlFKUaBVNEQFoFkdAmJuFs+FDfHV9lChoBmgJaA9DCCfZ6nKKXXFAlIaUUpRoFU0YAWgWR0CYm8HG0eEJdX2UKGgGaAloD0MI5BWInpTGcECUhpRSlGgVTSABaBZHQJibxzOoo/l1fZQoaAZoCWgPQwg+6xotR3lyQJSGlFKUaBVL+WgWR0CYnMcfvF3qdX2UKGgGaAloD0MIowc+ButecUCUhpRSlGgVTRYBaBZHQJido8Md92J1fZQoaAZoCWgPQwhSgCiY8QZxQJSGlFKUaBVNFwFoFkdAmJ2xR64Ue3V9lChoBmgJaA9DCFX2XRF8n29AlIaUUpRoFU0DAWgWR0CYndjR2KVIdX2UKGgGaAloD0MIt18+WXE3ckCUhpRSlGgVS/ZoFkdAmJ3euJUHZHV9lChoBmgJaA9DCHgnnx7bw29AlIaUUpRoFU0lAWgWR0CYnfyN4qwydX2UKGgGaAloD0MIMgG/RpIGckCUhpRSlGgVS+hoFkdAmJ5igXdj5XV9lChoBmgJaA9DCKIm+nyU2G9AlIaUUpRoFU0wAWgWR0CYnpQHiWE9dX2UKGgGaAloD0MIIF9CBYfdb0CUhpRSlGgVTQcBaBZHQJigRHG0eEJ1fZQoaAZoCWgPQwgB+n3/JudxQJSGlFKUaBVNOwFoFkdAmLH64c3l0nV9lChoBmgJaA9DCFLwFHIlz21AlIaUUpRoFU0TAWgWR0CYsk8W9DhMdX2UKGgGaAloD0MI24ZREDwAc0CUhpRSlGgVS/BoFkdAmLKS7TUiIXV9lChoBmgJaA9DCLX/AdbqxXBAlIaUUpRoFU0gAWgWR0CYs17ALy+YdX2UKGgGaAloD0MIDoXP1sGBcUCUhpRSlGgVTRYBaBZHQJizk7W/ag51fZQoaAZoCWgPQwiSsG8nkdpxQJSGlFKUaBVNDwFoFkdAmLOZbUwztXV9lChoBmgJaA9DCN1e0hhttnBAlIaUUpRoFUv/aBZHQJi0PhWHUMJ1fZQoaAZoCWgPQwgyIHu9u0VxQJSGlFKUaBVNOwFoFkdAmLShvR7Z4HV9lChoBmgJaA9DCKsgBrp20HBAlIaUUpRoFUvzaBZHQJi04KSgXdl1fZQoaAZoCWgPQwhm2ZPAZj9uQJSGlFKUaBVNEAFoFkdAmLV7Q5WBBnV9lChoBmgJaA9DCAge3941kXFAlIaUUpRoFUv5aBZHQJi1zd+G47R1fZQoaAZoCWgPQwhzLO+qx9JwQJSGlFKUaBVNAwFoFkdAmLXbN8ma6XV9lChoBmgJaA9DCPgb7bihQ3JAlIaUUpRoFU0ZAWgWR0CYtgTlkpZwdX2UKGgGaAloD0MIeqcC7vkQcUCUhpRSlGgVTSUBaBZHQJi2Kc8Tzup1fZQoaAZoCWgPQwhfQgWHF49zQJSGlFKUaBVNRAFoFkdAmLa/rfLs8nV9lChoBmgJaA9DCOZ1xCEbQHBAlIaUUpRoFU0PAWgWR0CYt/y9mHxjdX2UKGgGaAloD0MIyw9c5YmsckCUhpRSlGgVTQABaBZHQJi443PzFuN1fZQoaAZoCWgPQwiCGylbJLNtQJSGlFKUaBVNBgFoFkdAmLmToZAIIHV9lChoBmgJaA9DCP8Iw4BlsnFAlIaUUpRoFUv3aBZHQJi52OmzjWF1fZQoaAZoCWgPQwjFH0Wd+VdwQJSGlFKUaBVNHwFoFkdAmLoLG7z06HV9lChoBmgJaA9DCPK0/MBV4W5AlIaUUpRoFUv5aBZHQJi6GIbfgrJ1fZQoaAZoCWgPQwhOYaWCSvpyQJSGlFKUaBVNDwFoFkdAmLqtGI9C/3V9lChoBmgJaA9DCGTOM/Yll29AlIaUUpRoFUv/aBZHQJi60S5AhSt1fZQoaAZoCWgPQwh8e9egr9JxQJSGlFKUaBVL+GgWR0CYuz6QeV9ndX2UKGgGaAloD0MIDJQUWAANcUCUhpRSlGgVS+1oFkdAmLwj0th/iHV9lChoBmgJaA9DCLPr3opEzm9AlIaUUpRoFU0CAWgWR0CYvI2vStvGdX2UKGgGaAloD0MIV5boLLOtcECUhpRSlGgVS/1oFkdAmLzX/o7muHV9lChoBmgJaA9DCGr2QCuwrHBAlIaUUpRoFU06AWgWR0CYvP5IpYs/dX2UKGgGaAloD0MIUBiUaXS4cECUhpRSlGgVTScBaBZHQJi9T/Ot4iZ1fZQoaAZoCWgPQwhR+GwdXONwQJSGlFKUaBVNAQFoFkdAmL2tUXHim3V9lChoBmgJaA9DCEZda+8TFXBAlIaUUpRoFUv/aBZHQJi/DlMh5gR1fZQoaAZoCWgPQwh+VpkprbtzQJSGlFKUaBVLz2gWR0CYwOTZxrBTdX2UKGgGaAloD0MIUmStoZRdcUCUhpRSlGgVS/toFkdAmMH92ki2UnV9lChoBmgJaA9DCLmpgebzLXFAlIaUUpRoFU03AWgWR0CYwspSaVlgdX2UKGgGaAloD0MIpn7eVGSKcUCUhpRSlGgVTRUBaBZHQJjCy3QUpNN1fZQoaAZoCWgPQwis5jki3wNxQJSGlFKUaBVL9mgWR0CYwvivPkaNdX2UKGgGaAloD0MIBW7dzZMjcECUhpRSlGgVTTUBaBZHQJjDuhzvJBB1fZQoaAZoCWgPQwgAcsKEEYxyQJSGlFKUaBVNJQFoFkdAmMPFX7tRenV9lChoBmgJaA9DCCV5ru/DHlFAlIaUUpRoFUvGaBZHQJjEb+FUQ051fZQoaAZoCWgPQwjjcOZXcw1xQJSGlFKUaBVNDgFoFkdAmMSTHOryUnV9lChoBmgJaA9DCKiMf5+xMHBAlIaUUpRoFUvmaBZHQJjEyjoIOYp1fZQoaAZoCWgPQwisVib8UlJtQJSGlFKUaBVL/2gWR0CYxfCeEqUedX2UKGgGaAloD0MIM9/BTxy7UECUhpRSlGgVS7FoFkdAmMYblq8DjnV9lChoBmgJaA9DCAzohTvXxnFAlIaUUpRoFU1AAWgWR0CYx5b1h9b5dX2UKGgGaAloD0MIIhgHl047cECUhpRSlGgVTRoBaBZHQJjIJDu0CzV1fZQoaAZoCWgPQwjz59uCZYhyQJSGlFKUaBVL9GgWR0CYyuUd7v5QdX2UKGgGaAloD0MITIqPT4jKcECUhpRSlGgVTZQBaBZHQJjMUJgLJCB1fZQoaAZoCWgPQwhozCTqxZRwQJSGlFKUaBVL9mgWR0CYzN++ueSTdX2UKGgGaAloD0MIO8PUlrp3cUCUhpRSlGgVTQoBaBZHQJjNAwEhaDB1fZQoaAZoCWgPQwgVjErqBIJOQJSGlFKUaBVLtGgWR0CYzcb2USqVdX2UKGgGaAloD0MIWvW52soXckCUhpRSlGgVTQ4BaBZHQJjN88vEjxF1fZQoaAZoCWgPQwgbKzHPSq5uQJSGlFKUaBVNEAFoFkdAmM413MY/FHV9lChoBmgJaA9DCGUZ4ljXQnBAlIaUUpRoFU0CAWgWR0CYzmronrprdX2UKGgGaAloD0MItd/aiVI3cUCUhpRSlGgVTQsBaBZHQJjOv3M6ikB1fZQoaAZoCWgPQwjt8q0Pa5twQJSGlFKUaBVNFQFoFkdAmNBFTm4iHXV9lChoBmgJaA9DCMfxQ6UReXFAlIaUUpRoFU0iAWgWR0CY0Jn5i3G5dX2UKGgGaAloD0MIgoyACoe7cECUhpRSlGgVTSwBaBZHQJjQ5H+ZPVN1fZQoaAZoCWgPQwgZHCWvDgFzQJSGlFKUaBVNGwFoFkdAmNHxEWqLj3V9lChoBmgJaA9DCKUSntBrPWxAlIaUUpRoFU0XAWgWR0CY021rZamodX2UKGgGaAloD0MIrd7hdmhPb0CUhpRSlGgVTQ4BaBZHQJjTnrNW2gF1ZS4="
|
53 |
+
},
|
54 |
+
"ep_success_buffer": {
|
55 |
+
":type:": "<class 'collections.deque'>",
|
56 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
57 |
+
},
|
58 |
+
"_n_updates": 248,
|
59 |
+
"observation_space": {
|
60 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
61 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
62 |
+
"dtype": "float32",
|
63 |
+
"_shape": [
|
64 |
+
8
|
65 |
+
],
|
66 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
67 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
68 |
+
"bounded_below": "[False False False False False False False False]",
|
69 |
+
"bounded_above": "[False False False False False False False False]",
|
70 |
+
"_np_random": null
|
71 |
+
},
|
72 |
+
"action_space": {
|
73 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
74 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
75 |
+
"n": 4,
|
76 |
+
"_shape": [],
|
77 |
+
"dtype": "int64",
|
78 |
+
"_np_random": null
|
79 |
+
},
|
80 |
+
"n_envs": 16,
|
81 |
+
"n_steps": 1024,
|
82 |
+
"gamma": 0.999,
|
83 |
+
"gae_lambda": 0.98,
|
84 |
+
"ent_coef": 0.01,
|
85 |
+
"vf_coef": 0.5,
|
86 |
+
"max_grad_norm": 0.5,
|
87 |
+
"batch_size": 64,
|
88 |
+
"n_epochs": 4,
|
89 |
+
"clip_range": {
|
90 |
+
":type:": "<class 'function'>",
|
91 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
92 |
+
},
|
93 |
+
"clip_range_vf": null,
|
94 |
+
"normalize_advantage": true,
|
95 |
+
"target_kl": null
|
96 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2d821ffbcd0f5faf50726cb9f085f026e96c2c0f34873e389f0b677f3826cb80
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cf4998e2fee42c78ddcda94687d9b263884a53799aa00112d1f07227dae1d95c
|
3 |
+
size 43329
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (211 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 267.889748108136, "std_reward": 18.753648219514552, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-25T10:24:53.795116"}
|