File size: 11,532 Bytes
4caa505
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
# Copyright 2024 MosaicML ComposeRL authors
# SPDX-License-Identifier: Apache-2.0

import os
from copy import deepcopy
from dataclasses import dataclass
from typing import (
    Any,
    Optional,
    Union,
)

import numpy as np
import torch
import torch.nn as nn
from transformers import (
    AutoConfig,
    AutoModelForCausalLM,
    PretrainedConfig,
    PreTrainedModel,
)
from transformers.modeling_outputs import ModelOutput


@dataclass
class SequenceClassifierOutput(ModelOutput):
    """Sequence Classification Output.

    Args:
        loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
            Classification (or regression if config.num_labels==1) loss.
        scores (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
            Classification (or regression if config.num_labels==1) scores (before SoftMax).
        logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`)

            Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
            `past_key_values` input) to speed up sequential decoding.
        hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
            one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
        attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
    """

    loss: Optional[torch.FloatTensor] = None
    scores: Optional[torch.FloatTensor] = None
    logits: Optional[torch.FloatTensor] = None
    past_key_values: Optional[tuple[tuple[torch.FloatTensor]]] = None
    hidden_states: Optional[tuple[torch.FloatTensor, ...]] = None
    attentions: Optional[tuple[torch.FloatTensor, ...]] = None


class ValueHead(nn.Module):
    """Value head for the transformer which outputs n_labels values."""

    def __init__(self, n_labels: int, hidden_size: int, p_dropout: float = 0.0):
        super().__init__()
        self.dense = nn.Linear(hidden_size, hidden_size)
        self.dropout = nn.Dropout(p_dropout)
        self.score = nn.Linear(hidden_size, n_labels)
        torch.nn.init.normal_(
            self.score.weight,
            std=1 / np.sqrt(hidden_size + 1),
        )
        torch.nn.init.constant_(self.score.bias, val=0.0)

    def forward(
        self,
        hidden_states: torch.Tensor,
        **kwargs: Any,
    ) -> torch.Tensor:
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.dense(hidden_states)
        hidden_states = torch.tanh(hidden_states)
        hidden_states = self.dropout(hidden_states)
        output = self.score(hidden_states)
        return output


class RewardModelConfig(PretrainedConfig):
    model_type = 'pairwise_rm'

    def __init__(
        self,
        base_model: Optional[Union[str, os.PathLike]
                            ] = 'meta-llama/Meta-Llama-3-70B-Instruct',
        base_config: Optional[PretrainedConfig] = None,
        p_dropout: float = 0.0,
        n_labels: int = 1,
        bias: float = 0.0,
        return_logits: bool = False,
        pretrain_cfg: Optional[dict[str, Any]] = None,
        pretrained: bool = False,
        **kwargs: Any,
    ):
        super().__init__(**kwargs)
        self.base_model = base_model
        self.base_config = base_config if base_config is not None else AutoConfig.from_pretrained(
            base_model,
        )
        temp_config = deepcopy(self.base_config)
        if not isinstance(temp_config, dict):
            temp_config = temp_config.__dict__
        for key, value in temp_config.items():
            if key not in ['_name_or_path', 'architectures']:
                setattr(self, key, value)
        self.p_dropout = p_dropout
        self.n_labels = n_labels
        self.bias = bias
        self.return_logits = return_logits
        self.pretrain_cfg = pretrain_cfg if pretrain_cfg is not None else {}
        self.pretrained = pretrained


class AutoModelForCausalLMWithRM(PreTrainedModel):
    config_class = RewardModelConfig
    _supports_flash_attn_2 = True

    def __init__(self, config: PretrainedConfig, *args: Any, **kwargs: Any):
        super().__init__(config)
        self.config = config
        pretrain_cfg = config.pretrain_cfg
        pretrained = config.pretrained
        if pretrained:
            self.lm_backbone = AutoModelForCausalLM.from_pretrained(
                config.base_model,
                config=config.base_config,
                **pretrain_cfg,
            )
        else:
            # When downloading from hub, base config gets converted to dict
            # Redownload to make type PretrainedConfig
            if isinstance(config.base_config, dict):
                config.base_config = AutoConfig.from_pretrained(
                    config.base_model,
                    **config.base_config,
                )
            self.lm_backbone = AutoModelForCausalLM.from_config(
                config.base_config,
                **kwargs,
            )
        self.value_head = ValueHead(
            n_labels=self.config.n_labels,
            hidden_size=self.config.hidden_size,
            p_dropout=self.config.p_dropout,
        )

    def generate(self, *args: Any, **kwargs: Any):
        return self.lm_backbone.generate(**kwargs)

    def resize_token_embeddings(
        self,
        new_num_tokens: Optional[int] = None,
        pad_to_multiple_of: Optional[int] = None,
    ) -> nn.Embedding:
        # Note need to update vocab size in base config as well so lm_head modification happens
        self.config.base_config.vocab_size = new_num_tokens
        model_embeds = super().resize_token_embeddings(
            new_num_tokens=new_num_tokens,
            pad_to_multiple_of=pad_to_multiple_of,
        )
        return model_embeds

    def set_input_embeddings(self, new_embeddings: Any):
        return self.lm_backbone.set_input_embeddings(new_embeddings)

    def get_input_embeddings(self):
        return self.lm_backbone.get_input_embeddings()

    def set_output_embeddings(self, new_embeddings: Any):
        return self.lm_backbone.set_output_embeddings(new_embeddings)

    def get_output_embeddings(self):
        return self.lm_backbone.get_output_embeddings()

    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Any] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        **kwargs: Any,
    ):
        output = self.lm_backbone(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            labels=labels,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=True,
            return_dict=True,
            cache_position=cache_position,
        )
        scores = self.value_head(
            output.hidden_states[-1],
        ).squeeze(-1) - self.config.bias

        logits = None
        if self.config.return_logits:
            logits = output.logits

        return SequenceClassifierOutput(
            loss=output.loss,
            scores=scores,
            logits=logits,
            past_key_values=output.past_key_values,
            hidden_states=output.hidden_states,
            attentions=output.attentions,
        )

    @classmethod
    def from_config(
        cls,
        config: PretrainedConfig,
        **kwargs: Any,
    ) -> PreTrainedModel:
        config.pretrained = False
        model = cls(config, **kwargs)
        return model

    @classmethod
    def from_pretrained(
        cls,
        pretrained_model_name_or_path: Optional[Union[str, os.PathLike]],
        *model_args: Any,
        config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None,
        cache_dir: Optional[Union[str, os.PathLike]] = None,
        ignore_mismatched_sizes: bool = False,
        force_download: bool = False,
        local_files_only: bool = False,
        token: Optional[Union[str, bool]] = True,
        revision: str = 'main',
        use_safetensors: Optional[bool] = None,
        **kwargs: Any,
    ) -> PreTrainedModel:
        trust_remote_code = kwargs.pop('trust_remote_code', None)
        attn_implementation = kwargs.pop(
            'attn_implementation',
            'eager',
        )
        return_lm_logits = kwargs.pop('return_lm_logits', False)
        load_in_8bit = kwargs.pop('load_in_8bit', False)

        pretrained_model_config = AutoConfig.from_pretrained(
            pretrained_model_name_or_path,
            trust_remote_code=trust_remote_code,
            token=token,
            attn_implementation=attn_implementation,
            use_cache=False,
        )

        if isinstance(pretrained_model_config, cls.config_class):
            return super().from_pretrained(
                pretrained_model_name_or_path,
                *model_args,
                config,
                cache_dir,
                ignore_mismatched_sizes,
                force_download,
                local_files_only,
                token,
                revision,
                use_safetensors,
                **kwargs,
            )

        pretrain_cfg = {
            'trust_remote_code': trust_remote_code,
            'token': token,
            'load_in_8bit': load_in_8bit,
            'attn_implementation': attn_implementation,
        }

        reward_model_config = RewardModelConfig(
            base_model=pretrained_model_name_or_path,
            base_config=pretrained_model_config,
            hidden_size=pretrained_model_config.hidden_size,
            return_logits=return_lm_logits,
            vocab_size=pretrained_model_config.vocab_size,
            pretrained=True,
            pretrain_cfg=pretrain_cfg,
        )

        model = cls(reward_model_config)

        return model