|
|
|
|
|
|
|
import os |
|
from copy import deepcopy |
|
from dataclasses import dataclass |
|
from typing import ( |
|
Any, |
|
Optional, |
|
Union, |
|
) |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
from transformers import ( |
|
AutoConfig, |
|
AutoModelForCausalLM, |
|
PretrainedConfig, |
|
PreTrainedModel, |
|
) |
|
from transformers.modeling_outputs import ModelOutput |
|
|
|
|
|
@dataclass |
|
class SequenceClassifierOutput(ModelOutput): |
|
"""Sequence Classification Output. |
|
|
|
Args: |
|
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): |
|
Classification (or regression if config.num_labels==1) loss. |
|
scores (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`): |
|
Classification (or regression if config.num_labels==1) scores (before SoftMax). |
|
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): |
|
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). |
|
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): |
|
tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape |
|
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) |
|
|
|
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see |
|
`past_key_values` input) to speed up sequential decoding. |
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + |
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. |
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): |
|
tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, |
|
sequence_length)`. |
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
""" |
|
|
|
loss: Optional[torch.FloatTensor] = None |
|
scores: Optional[torch.FloatTensor] = None |
|
logits: Optional[torch.FloatTensor] = None |
|
past_key_values: Optional[tuple[tuple[torch.FloatTensor]]] = None |
|
hidden_states: Optional[tuple[torch.FloatTensor, ...]] = None |
|
attentions: Optional[tuple[torch.FloatTensor, ...]] = None |
|
|
|
|
|
class ValueHead(nn.Module): |
|
"""Value head for the transformer which outputs n_labels values.""" |
|
|
|
def __init__(self, n_labels: int, hidden_size: int, p_dropout: float = 0.0): |
|
super().__init__() |
|
self.dense = nn.Linear(hidden_size, hidden_size) |
|
self.dropout = nn.Dropout(p_dropout) |
|
self.score = nn.Linear(hidden_size, n_labels) |
|
torch.nn.init.normal_( |
|
self.score.weight, |
|
std=1 / np.sqrt(hidden_size + 1), |
|
) |
|
torch.nn.init.constant_(self.score.bias, val=0.0) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
**kwargs: Any, |
|
) -> torch.Tensor: |
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = torch.tanh(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
output = self.score(hidden_states) |
|
return output |
|
|
|
|
|
class RewardModelConfig(PretrainedConfig): |
|
model_type = 'pairwise_rm' |
|
|
|
def __init__( |
|
self, |
|
base_model: Optional[Union[str, os.PathLike] |
|
] = 'meta-llama/Meta-Llama-3-70B-Instruct', |
|
base_config: Optional[PretrainedConfig] = None, |
|
p_dropout: float = 0.0, |
|
n_labels: int = 1, |
|
bias: float = 0.0, |
|
return_logits: bool = False, |
|
pretrain_cfg: Optional[dict[str, Any]] = None, |
|
pretrained: bool = False, |
|
**kwargs: Any, |
|
): |
|
super().__init__(**kwargs) |
|
self.base_model = base_model |
|
self.base_config = base_config if base_config is not None else AutoConfig.from_pretrained( |
|
base_model, |
|
) |
|
temp_config = deepcopy(self.base_config) |
|
if not isinstance(temp_config, dict): |
|
temp_config = temp_config.__dict__ |
|
for key, value in temp_config.items(): |
|
if key not in ['_name_or_path', 'architectures']: |
|
setattr(self, key, value) |
|
self.p_dropout = p_dropout |
|
self.n_labels = n_labels |
|
self.bias = bias |
|
self.return_logits = return_logits |
|
self.pretrain_cfg = pretrain_cfg if pretrain_cfg is not None else {} |
|
self.pretrained = pretrained |
|
|
|
|
|
class AutoModelForCausalLMWithRM(PreTrainedModel): |
|
config_class = RewardModelConfig |
|
|
|
def __init__(self, config: RewardModelConfig): |
|
super().__init__(config) |
|
self.config = config |
|
pretrain_cfg = config.pretrain_cfg |
|
pretrained = config.pretrained |
|
if pretrained: |
|
self.lm_backbone = AutoModelForCausalLM.from_pretrained( |
|
config.base_model, |
|
config=config.base_config, |
|
**pretrain_cfg, |
|
) |
|
else: |
|
|
|
if isinstance(config.base_config, dict): |
|
config.base_config = AutoConfig.from_pretrained( |
|
config.base_model, |
|
**config.base_config, |
|
) |
|
self.lm_backbone = AutoModelForCausalLM.from_config( |
|
config.base_config, |
|
trust_remote_code=True, |
|
) |
|
self.value_head = ValueHead( |
|
n_labels=self.config.n_labels, |
|
hidden_size=self.config.hidden_size, |
|
p_dropout=self.config.p_dropout, |
|
) |
|
|
|
def generate(self, *args: Any, **kwargs: Any): |
|
return self.lm_backbone.generate(**kwargs) |
|
|
|
def resize_token_embeddings( |
|
self, |
|
new_num_tokens: Optional[int] = None, |
|
pad_to_multiple_of: Optional[int] = None, |
|
) -> nn.Embedding: |
|
|
|
self.config.base_config.vocab_size = new_num_tokens |
|
model_embeds = super().resize_token_embeddings( |
|
new_num_tokens=new_num_tokens, |
|
pad_to_multiple_of=pad_to_multiple_of, |
|
) |
|
return model_embeds |
|
|
|
def set_input_embeddings(self, new_embeddings: Any): |
|
return self.lm_backbone.set_input_embeddings(new_embeddings) |
|
|
|
def get_input_embeddings(self): |
|
return self.lm_backbone.get_input_embeddings() |
|
|
|
def set_output_embeddings(self, new_embeddings: Any): |
|
return self.lm_backbone.set_output_embeddings(new_embeddings) |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_backbone.get_output_embeddings() |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Any] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
**kwargs: Any, |
|
): |
|
output = self.lm_backbone( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
labels=labels, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=True, |
|
return_dict=True, |
|
cache_position=cache_position, |
|
) |
|
scores = self.value_head( |
|
output.hidden_states[-1], |
|
).squeeze(-1) - self.config.bias |
|
|
|
logits = None |
|
if self.config.return_logits: |
|
logits = output.logits |
|
|
|
return SequenceClassifierOutput( |
|
loss=output.loss, |
|
scores=scores, |
|
logits=logits, |
|
past_key_values=output.past_key_values, |
|
hidden_states=output.hidden_states, |
|
attentions=output.attentions, |
|
) |
|
|
|
@classmethod |
|
def from_config( |
|
cls, |
|
config: PretrainedConfig, |
|
**kwargs: Any, |
|
) -> PreTrainedModel: |
|
return cls._from_config(config, **kwargs) |
|
|
|
@classmethod |
|
def from_pretrained( |
|
cls, |
|
pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], |
|
*model_args: Any, |
|
config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None, |
|
cache_dir: Optional[Union[str, os.PathLike]] = None, |
|
ignore_mismatched_sizes: bool = False, |
|
force_download: bool = False, |
|
local_files_only: bool = False, |
|
token: Optional[Union[str, bool]] = None, |
|
revision: str = 'main', |
|
use_safetensors: Optional[bool] = None, |
|
**kwargs: Any, |
|
) -> PreTrainedModel: |
|
trust_remote_code = kwargs.pop('trust_remote_code', True) |
|
use_flash_attention_2 = kwargs.pop('use_flash_attention_2', False) |
|
return_lm_logits = kwargs.pop('return_lm_logits', False) |
|
load_in_8bit = kwargs.pop('load_in_8bit', False) |
|
|
|
requested_attention_implementation = 'flash_attention_2' if use_flash_attention_2 else 'eager' |
|
|
|
pretrained_model_config = AutoConfig.from_pretrained( |
|
pretrained_model_name_or_path, |
|
trust_remote_code=trust_remote_code, |
|
token=True, |
|
attn_implementation=requested_attention_implementation, |
|
use_cache=False, |
|
) |
|
|
|
if isinstance(pretrained_model_config, cls.config_class): |
|
return super().from_pretrained( |
|
pretrained_model_name_or_path, |
|
*model_args, |
|
config, |
|
cache_dir, |
|
ignore_mismatched_sizes, |
|
force_download, |
|
local_files_only, |
|
token, |
|
revision, |
|
use_safetensors, |
|
**kwargs, |
|
) |
|
|
|
pretrain_cfg = { |
|
'trust_remote_code': trust_remote_code, |
|
'token': True, |
|
'load_in_8bit': load_in_8bit, |
|
} |
|
|
|
reward_model_config = RewardModelConfig( |
|
base_model=pretrained_model_name_or_path, |
|
base_config=pretrained_model_config, |
|
hidden_size=pretrained_model_config.hidden_size, |
|
torch_dtype=pretrained_model_config.torch_dtype, |
|
return_logits=return_lm_logits, |
|
vocab_size=pretrained_model_config.vocab_size, |
|
pretrained=True, |
|
pretrain_cfg=pretrain_cfg, |
|
) |
|
|
|
model = cls(reward_model_config) |
|
|
|
return model |
|
|