bart-zh-hk-wiki / test.py
jed351's picture
Add test script
c7a59d6
raw
history blame
2.14 kB
import transformers
from datasets import ClassLabel
import random
import pandas as pd
def tokenize_function(examples):
return tokenizer(examples['text'], add_special_tokens=True)
def group_texts(examples):
# Concatenate all texts.
concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()}
total_length = len(concatenated_examples[list(examples.keys())[0]])
# We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
# customize this part to your needs.
total_length = (total_length // block_size) * block_size
# Split by chunks of max_len.
result = {
k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
for k, t in concatenated_examples.items()
}
result["labels"] = result["input_ids"].copy()
return result
block_size = 128
from datasets import load_dataset
datasets = load_dataset('jed351/cantonese-wikipedia')
from transformers import AutoTokenizer
model_checkpoint = "Ayaka/bart-base-cantonese"
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, use_fast=True)
tokenized_datasets = datasets.map(tokenize_function,
batched=True, num_proc=4, remove_columns=["text"])
lm_datasets = tokenized_datasets.map(
group_texts,
batched=True,
batch_size=1000,
num_proc=4,
)
from transformers import Trainer, TrainingArguments
from transformers import DataCollatorForLanguageModeling
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm_probability=0.15)
from transformers import AutoModelForMaskedLM
model = AutoModelForMaskedLM.from_pretrained(model_checkpoint)
training_args = TrainingArguments(
f"bart-finetuned-wikitext2",
evaluation_strategy = "epoch",
learning_rate=2e-5,
weight_decay=0.01,
push_to_hub=False,
per_device_train_batch_size=72,
fp16=True,
save_steps=5000
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=lm_datasets["train"],
eval_dataset=lm_datasets["test"],
data_collator=data_collator,
)
trainer.train()