File size: 30,762 Bytes
516a027 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 |
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Default 8-bit transforms."""
import collections
import inspect
import numpy as np
import tensorflow as tf
from tensorflow_model_optimization.python.core.keras.compat import keras
from tensorflow_model_optimization.python.core.keras.compat import unique_object_name
from tensorflow_model_optimization.python.core.quantization.keras import quantize_aware_activation
from tensorflow_model_optimization.python.core.quantization.keras import quantize_layer
from tensorflow_model_optimization.python.core.quantization.keras import quantizers
from tensorflow_model_optimization.python.core.quantization.keras import utils as quantize_utils
from tensorflow_model_optimization.python.core.quantization.keras.experimental.default_n_bit import default_n_bit_quantize_configs as configs
from tensorflow_model_optimization.python.core.quantization.keras.experimental.default_n_bit import default_n_bit_quantize_registry
from tensorflow_model_optimization.python.core.quantization.keras.graph_transformations import transforms
LayerNode = transforms.LayerNode
LayerPattern = transforms.LayerPattern
def _get_conv_bn_layers(bn_layer_node):
bn_layer = bn_layer_node.layer
conv_layer = bn_layer_node.input_layers[0].layer
return conv_layer, bn_layer
def _get_weights(bn_layer_node):
"""Returns weight values for fused layer, including copying original values in unfused version."""
return collections.OrderedDict(
list(bn_layer_node.input_layers[0].weights.items())
+ list(bn_layer_node.weights.items()))
def _get_params(conv_layer, bn_layer, relu_layer=None):
"""Retrieve conv_bn params within wrapped layers."""
if 'use_bias' in conv_layer['config']:
if conv_layer['config']['use_bias']:
raise ValueError(
'use_bias should not be set to True in a Conv layer when followed '
'by BatchNormalization. The bias in the Conv would be redundant '
'with the one in the BatchNormalization.')
del conv_layer['config']['use_bias']
if 'name' in bn_layer['config']:
del bn_layer['config']['name']
# TODO(pulkitb): remove key conflicts
params = dict(
list(conv_layer['config'].items()) + list(bn_layer['config'].items()))
if relu_layer is not None:
params['post_activation'] = quantize_utils.deserialize_layer(
relu_layer, use_legacy_format=True
)
return params
def _get_layer_node(fused_layer, weights):
layer_config = quantize_utils.serialize_layer(
fused_layer, use_legacy_format=True
)
layer_config['name'] = layer_config['config']['name']
# This config tracks which layers get quantized, and whether they have a
# custom QuantizeConfig.
layer_metadata = {'quantize_config': None}
return LayerNode(layer_config, weights, metadata=layer_metadata)
def _get_quantize_config(layer_node):
return layer_node.metadata.get('quantize_config')
def _has_custom_quantize_config(*layer_nodes):
for layer_node in layer_nodes:
if _get_quantize_config(layer_node) is not None:
return True
return False
def _normalize_tuple(value):
if isinstance(value, int):
return (value,)
else:
return tuple(value)
class Conv2DBatchNormQuantize(transforms.Transform):
"""Ensure FQ does not get placed between Conv and BatchNorm."""
def __init__(self, num_bits_weight: int = 8, num_bits_activation: int = 8):
self._num_bits_weight = num_bits_weight
self._num_bits_activation = num_bits_activation
def pattern(self):
return LayerPattern(
'BatchNormalization|SyncBatchNormalization',
inputs=[LayerPattern(
'Conv2D|DepthwiseConv2D', config={'activation': 'linear'})])
def _replace(self, bn_layer_node, conv_layer_node):
if _has_custom_quantize_config(bn_layer_node, conv_layer_node):
return bn_layer_node
conv_layer_node.layer['config']['activation'] = (
quantize_utils.serialize_activation(
quantize_aware_activation.NoOpActivation(), use_legacy_format=True
)
)
bn_layer_node.metadata['quantize_config'] = (
configs.DefaultNBitOutputQuantizeConfig(
num_bits_weight=self._num_bits_weight,
num_bits_activation=self._num_bits_activation))
return bn_layer_node
def replacement(self, match_layer):
bn_layer_node = match_layer
conv_layer_node = match_layer.input_layers[0]
return self._replace(bn_layer_node, conv_layer_node)
def custom_objects(self):
return {
'NoOpQuantizeConfig':
configs.NoOpQuantizeConfig,
'NoOpActivation':
quantize_aware_activation.NoOpActivation
}
class Conv2DReshapeBatchNormQuantize(Conv2DBatchNormQuantize):
"""Ensure FQ does not get placed between Conv, Reshape and BatchNorm."""
def __init__(self, num_bits_weight: int = 8, num_bits_activation: int = 8):
super(Conv2DReshapeBatchNormQuantize, self).__init__(
num_bits_weight=num_bits_weight,
num_bits_activation=num_bits_activation)
self._num_bits_weight = num_bits_weight
self._num_bits_activation = num_bits_activation
def pattern(self):
return LayerPattern(
'BatchNormalization|SyncBatchNormalization',
inputs=[LayerPattern(
'Lambda', config={'name': 'sepconv1d_squeeze.*'},
inputs=[LayerPattern(
'Conv2D|DepthwiseConv2D',
config={'activation': 'linear'})])])
def replacement(self, match_layer):
bn_layer_node = match_layer
reshape_layer_node = bn_layer_node.input_layers[0]
conv_layer_node = reshape_layer_node.input_layers[0]
return self._replace(bn_layer_node, conv_layer_node)
class Conv2DBatchNormReLUQuantize(Conv2DBatchNormQuantize):
"""Ensure FQ does not get placed between Conv, BatchNorm and ReLU."""
def __init__(self, num_bits_weight: int = 8, num_bits_activation: int = 8):
super(Conv2DBatchNormReLUQuantize, self).__init__(
num_bits_weight=num_bits_weight,
num_bits_activation=num_bits_activation)
self._num_bits_weight = num_bits_weight
self._num_bits_activation = num_bits_activation
def pattern(self):
return LayerPattern(
# TODO(pulkitb): Enhance match to only occur for relu, relu1 and relu6
'ReLU',
inputs=[super(Conv2DBatchNormReLUQuantize, self).pattern()])
def _replace(self, relu_layer_node, bn_layer_node, conv_layer_node):
if _has_custom_quantize_config(
relu_layer_node, bn_layer_node, conv_layer_node):
return relu_layer_node
conv_layer_node.layer['config']['activation'] = (
quantize_utils.serialize_activation(
quantize_aware_activation.NoOpActivation(), use_legacy_format=True
)
)
bn_layer_node.metadata['quantize_config'] = (
configs.NoOpQuantizeConfig())
return relu_layer_node
def replacement(self, match_layer):
relu_layer_node = match_layer
bn_layer_node = relu_layer_node.input_layers[0]
conv_layer_node = bn_layer_node.input_layers[0]
return self._replace(relu_layer_node, bn_layer_node, conv_layer_node)
class Conv2DBatchNormActivationQuantize(Conv2DBatchNormReLUQuantize):
"""Ensure FQ does not get placed between Conv, BatchNorm and ReLU."""
def __init__(self, num_bits_weight: int = 8, num_bits_activation: int = 8):
super(Conv2DBatchNormActivationQuantize, self).__init__(
num_bits_weight=num_bits_weight,
num_bits_activation=num_bits_activation)
self._num_bits_weight = num_bits_weight
self._num_bits_activation = num_bits_activation
def pattern(self):
return LayerPattern(
'Activation',
config={'activation': 'relu'},
inputs=[Conv2DBatchNormQuantize.pattern(self)])
class Conv2DReshapeBatchNormReLUQuantize(Conv2DBatchNormReLUQuantize):
"""Ensure FQ does not get placed between Conv, BatchNorm and ReLU."""
def __init__(self, num_bits_weight: int = 8, num_bits_activation: int = 8):
super(Conv2DReshapeBatchNormReLUQuantize, self).__init__(
num_bits_weight=num_bits_weight,
num_bits_activation=num_bits_activation)
self._num_bits_weight = num_bits_weight
self._num_bits_activation = num_bits_activation
def pattern(self):
return LayerPattern(
'ReLU',
inputs=[Conv2DReshapeBatchNormQuantize.pattern(self)])
def replacement(self, match_layer):
relu_layer_node = match_layer
bn_layer_node = relu_layer_node.input_layers[0]
squeeze_layer_node = bn_layer_node.input_layers[0]
conv_layer_node = squeeze_layer_node.input_layers[0]
return self._replace(relu_layer_node, bn_layer_node, conv_layer_node)
class Conv2DReshapeBatchNormActivationQuantize(
Conv2DReshapeBatchNormReLUQuantize):
"""Ensure FQ does not get placed between Conv, BatchNorm and ReLU."""
def __init__(self, num_bits_weight: int = 8, num_bits_activation: int = 8):
super(Conv2DReshapeBatchNormActivationQuantize, self).__init__(
num_bits_weight=num_bits_weight,
num_bits_activation=num_bits_activation)
self._num_bits_weight = num_bits_weight
self._num_bits_activation = num_bits_activation
def pattern(self):
return LayerPattern(
'Activation',
config={'activation': 'relu'},
inputs=[Conv2DReshapeBatchNormQuantize.pattern(self)])
class DenseBatchNormQuantize(transforms.Transform):
"""Transform to be applied to "Dense"+ "BatchNorm" Graph.
This transform disables Quantization between Dense and BatchNorm
to ensure FQ does not get placed between them.
"""
def __init__(self, num_bits_weight: int = 8, num_bits_activation: int = 8):
self._num_bits_weight = num_bits_weight
self._num_bits_activation = num_bits_activation
def pattern(self):
return LayerPattern(
'BatchNormalization|SyncBatchNormalization',
inputs=[LayerPattern('Dense', config={'activation': 'linear'})])
def _replace(self, bn_layer_node, dense_layer_node):
if _has_custom_quantize_config(bn_layer_node, dense_layer_node):
return bn_layer_node
dense_layer_node.layer['config']['activation'] = (
quantize_utils.serialize_activation(
quantize_aware_activation.NoOpActivation(), use_legacy_format=True
)
)
bn_layer_node.metadata['quantize_config'] = (
configs.DefaultNBitOutputQuantizeConfig(
num_bits_weight=self._num_bits_weight,
num_bits_activation=self._num_bits_activation))
return bn_layer_node
def replacement(self, match_layer):
bn_layer_node = match_layer
dense_layer_node = match_layer.input_layers[0]
return self._replace(bn_layer_node, dense_layer_node)
def custom_objects(self):
return {
'DefaultNBitOutputQuantizeConfig':
configs.DefaultNBitOutputQuantizeConfig,
'NoOpQuantizeConfig':
configs.NoOpQuantizeConfig,
'NoOpActivation': quantize_aware_activation.NoOpActivation
}
class DenseBatchNormReLUQuantize(DenseBatchNormQuantize):
"""Transform to be applied to "Dense"+ "BatchNorm" + "ReLU" Graph.
This transform disables Quantization between Dense, BatchNorm and ReLU
to ensure FQ does not get placed between them.
"""
def pattern(self):
return LayerPattern(
'ReLU', inputs=[super(DenseBatchNormReLUQuantize, self).pattern()])
def _replace(self, relu_layer_node, bn_layer_node, dense_layer_node):
if _has_custom_quantize_config(relu_layer_node, bn_layer_node,
dense_layer_node):
return relu_layer_node
dense_layer_node.layer['config']['activation'] = (
quantize_utils.serialize_activation(
quantize_aware_activation.NoOpActivation(), use_legacy_format=True
)
)
bn_layer_node.metadata['quantize_config'] = (
configs.NoOpQuantizeConfig())
return relu_layer_node
def replacement(self, match_layer):
relu_layer_node = match_layer
bn_layer_node = relu_layer_node.input_layers[0]
dense_layer_node = bn_layer_node.input_layers[0]
return self._replace(relu_layer_node, bn_layer_node, dense_layer_node)
class DenseBatchNormActivationQuantize(DenseBatchNormReLUQuantize):
"""Transform to be applied to "Dense"+ "BatchNorm" + "ReLU" Graph.
This transform disables Quantization between Dense, BatchNorm and ReLU
to ensure FQ does not get placed between them.
"""
def pattern(self):
return LayerPattern(
'Activation',
config={'activation': 'relu'},
inputs=[DenseBatchNormQuantize.pattern(self)])
class SeparableConv1DQuantize(transforms.Transform):
"""Add QAT support for Keras SeparableConv1D layer.
Transforms SeparableConv1D into a SeparableConv2D invocation. The Keras
SeparableConv1D layer internally uses the same code as a SeparbaleConv2D
layer. It simple expands and squeezes the tensor dimensions before and after
the convolutions. Applying this transform ensures the QAT handling for
SeparableConv2D kicks in and handles the FQ placement properly.
Maps:
Input -> SeparableConv1D -> Output
to
Input -> Lambda(ExpandDims) -> SeparableConv2D -> Lambda(Squeeze) -> Output
Unlike SeparableConv2DQuantize, this does not break the layer into
DepthwiseConv and Conv separately, since no DepthwiseConv1D exists.
"""
def __init__(self, num_bits_weight: int = 8, num_bits_activation: int = 8):
self._num_bits_weight = num_bits_weight
self._num_bits_activation = num_bits_activation
def pattern(self):
return LayerPattern('SeparableConv1D')
def _get_name(self, prefix):
# TODO(pulkitb): Move away from `unique_object_name` since it isn't
# exposed as externally usable.
return unique_object_name(prefix)
def replacement(self, match_layer):
if _has_custom_quantize_config(match_layer):
return match_layer
sepconv1d_layer = match_layer.layer
sepconv1d_config = sepconv1d_layer['config']
sepconv1d_weights = list(match_layer.weights.values())
padding = sepconv1d_config['padding']
# SepConv2D does not accept causal padding, and SepConv1D has some special
# handling for it.
# TODO(pulkitb): Add support for causal padding.
if padding == 'causal':
raise ValueError('SeparableConv1D with causal padding is not supported.')
# TODO(pulkitb): Handle other base_layer args such as dtype, input_dim etc.
sepconv2d_layer = keras.layers.SeparableConv2D(
filters=sepconv1d_config['filters'],
kernel_size=(1,) + _normalize_tuple(sepconv1d_config['kernel_size']),
strides=_normalize_tuple(sepconv1d_config['strides']) * 2,
padding=padding,
data_format=sepconv1d_config['data_format'],
dilation_rate=(1,)
+ _normalize_tuple(sepconv1d_config['dilation_rate']),
depth_multiplier=sepconv1d_config['depth_multiplier'],
activation=sepconv1d_config['activation'],
use_bias=sepconv1d_config['use_bias'],
depthwise_initializer=sepconv1d_config['depthwise_initializer'],
pointwise_initializer=sepconv1d_config['pointwise_initializer'],
bias_initializer=sepconv1d_config['bias_initializer'],
depthwise_regularizer=sepconv1d_config['depthwise_regularizer'],
pointwise_regularizer=sepconv1d_config['pointwise_regularizer'],
bias_regularizer=sepconv1d_config['bias_regularizer'],
activity_regularizer=sepconv1d_config['activity_regularizer'],
depthwise_constraint=sepconv1d_config['depthwise_constraint'],
pointwise_constraint=sepconv1d_config['pointwise_constraint'],
bias_constraint=sepconv1d_config['bias_constraint'],
# TODO(pulkitb): Rethink what to do for name. Using the same name leads
# to confusion, since it's typically separable_conv1d
name=sepconv1d_config['name'] + '_QAT_SepConv2D',
trainable=sepconv1d_config['trainable'],
)
sepconv2d_weights = collections.OrderedDict()
sepconv2d_weights['depthwise_kernel:0'] = np.expand_dims(
sepconv1d_weights[0], 0)
sepconv2d_weights['pointwise_kernel:0'] = np.expand_dims(
sepconv1d_weights[1], 0)
if sepconv1d_config['use_bias']:
sepconv2d_weights['bias:0'] = sepconv1d_weights[2]
if sepconv1d_config['data_format'] == 'channels_last':
spatial_dim = 1
else:
spatial_dim = 2
sepconv2d_layer_config = quantize_utils.serialize_layer(
sepconv2d_layer, use_legacy_format=True
)
sepconv2d_layer_config['name'] = sepconv2d_layer.name
# Needed to ensure these new layers are considered for quantization.
sepconv2d_metadata = {'quantize_config': None}
# TODO(pulkitb): Consider moving from Lambda to custom ExpandDims/Squeeze.
# Layer before SeparableConv2D which expands input tensors to match 2D.
expand_layer = keras.layers.Lambda(
lambda x: tf.expand_dims(x, spatial_dim),
name=self._get_name('sepconv1d_expand'),
)
expand_layer_config = quantize_utils.serialize_layer(
expand_layer, use_legacy_format=True
)
expand_layer_config['name'] = expand_layer.name
expand_layer_metadata = {
'quantize_config':
configs.NoOpQuantizeConfig()}
squeeze_layer = keras.layers.Lambda(
lambda x: tf.squeeze(x, [spatial_dim]),
name=self._get_name('sepconv1d_squeeze'),
)
squeeze_layer_config = quantize_utils.serialize_layer(
squeeze_layer, use_legacy_format=True
)
squeeze_layer_config['name'] = squeeze_layer.name
squeeze_layer_metadata = {
'quantize_config':
configs.NoOpQuantizeConfig()}
return LayerNode(
squeeze_layer_config,
metadata=squeeze_layer_metadata,
input_layers=[LayerNode(
sepconv2d_layer_config,
weights=sepconv2d_weights,
metadata=sepconv2d_metadata,
input_layers=[LayerNode(
expand_layer_config, metadata=expand_layer_metadata)]
)])
class SeparableConvQuantize(transforms.Transform):
"""Break SeparableConv into a DepthwiseConv and Conv layer.
SeparableConv is a composition of a DepthwiseConv and a Conv layer. For the
purpose of quantization, a FQ operation needs to be placed between the output
of DepthwiseConv and the following Conv.
This is needed since there is a dynamic tensor in between the two layers, and
it's range information needs to be captured by the FakeQuant op to ensure
full int8 quantization of the layers is possible.
Splitting the layer into 2 ensures that each individual layer is handled
correctly with respect to quantization.
"""
def __init__(self, num_bits_weight: int = 8, num_bits_activation: int = 8):
self._num_bits_weight = num_bits_weight
self._num_bits_activation = num_bits_activation
def pattern(self):
return LayerPattern('SeparableConv2D')
def replacement(self, match_layer):
if _has_custom_quantize_config(match_layer):
return match_layer
sepconv_layer = match_layer.layer
sepconv_weights = list(match_layer.weights.values())
# TODO(pulkitb): SeparableConv has kwargs other than constructor args which
# need to be handled.
# Applicable to both layers: trainable, dtype, name
# Applicable to dconv: input_dim, input_shape, batch_input_shape, batch_size
# Needs special handling: weights
# Unknown: dynamic, autocast
dconv_layer = keras.layers.DepthwiseConv2D(
kernel_size=sepconv_layer['config']['kernel_size'],
strides=sepconv_layer['config']['strides'],
padding=sepconv_layer['config']['padding'],
depth_multiplier=sepconv_layer['config']['depth_multiplier'],
data_format=sepconv_layer['config']['data_format'],
dilation_rate=sepconv_layer['config']['dilation_rate'],
activation=None,
use_bias=False,
depthwise_initializer=sepconv_layer['config']['depthwise_initializer'],
depthwise_regularizer=sepconv_layer['config']['depthwise_regularizer'],
depthwise_constraint=sepconv_layer['config']['depthwise_constraint'],
trainable=sepconv_layer['config']['trainable'],
)
dconv_weights = collections.OrderedDict()
dconv_weights['depthwise_kernel:0'] = sepconv_weights[0]
dconv_layer_config = quantize_utils.serialize_layer(
dconv_layer, use_legacy_format=True
)
dconv_layer_config['name'] = dconv_layer.name
# Needed to ensure these new layers are considered for quantization.
dconv_metadata = {'quantize_config': None}
conv_layer = keras.layers.Conv2D(
filters=sepconv_layer['config']['filters'],
kernel_size=(1, 1), # (1,) * rank
strides=(1, 1),
padding='valid',
data_format=sepconv_layer['config']['data_format'],
dilation_rate=sepconv_layer['config']['dilation_rate'],
groups=1,
activation=sepconv_layer['config']['activation'],
use_bias=sepconv_layer['config']['use_bias'],
kernel_initializer=sepconv_layer['config']['pointwise_initializer'],
bias_initializer=sepconv_layer['config']['bias_initializer'],
kernel_regularizer=sepconv_layer['config']['pointwise_regularizer'],
bias_regularizer=sepconv_layer['config']['bias_regularizer'],
activity_regularizer=sepconv_layer['config']['activity_regularizer'],
kernel_constraint=sepconv_layer['config']['pointwise_constraint'],
bias_constraint=sepconv_layer['config']['bias_constraint'],
trainable=sepconv_layer['config']['trainable'],
)
conv_weights = collections.OrderedDict()
conv_weights['kernel:0'] = sepconv_weights[1]
if sepconv_layer['config']['use_bias']:
conv_weights['bias:0'] = sepconv_weights[2]
conv_layer_config = quantize_utils.serialize_layer(
conv_layer, use_legacy_format=True
)
conv_layer_config['name'] = conv_layer.name
# Needed to ensure these new layers are considered for quantization.
conv_metadata = {'quantize_config': None}
dconv_layer_node = LayerNode(
dconv_layer_config, weights=dconv_weights, metadata=dconv_metadata)
return LayerNode(
conv_layer_config,
weights=conv_weights,
input_layers=[dconv_layer_node],
metadata=conv_metadata)
class LayerReLUQuantize(transforms.Transform):
"""Ensure FQ does not get placed between Add and ReLU."""
def __init__(self, num_bits_weight: int = 8, num_bits_activation: int = 8):
self._num_bits_weight = num_bits_weight
self._num_bits_activation = num_bits_activation
def pattern(self):
return LayerPattern(
'ReLU', inputs=[LayerPattern('Add|Conv2D|DepthwiseConv2D|Dense')])
def replacement(self, match_layer):
relu_layer_node = match_layer
add_layer_node = relu_layer_node.input_layers[0]
add_layer_node.metadata['quantize_config'] = (
configs.NoOpQuantizeConfig())
return match_layer
def custom_objects(self):
return {
'NoOpQuantizeConfig':
configs.NoOpQuantizeConfig,
}
class LayerReluActivationQuantize(LayerReLUQuantize):
"""Ensure FQ does not get placed between Add and ReLU."""
def __init__(self, num_bits_weight: int = 8, num_bits_activation: int = 8):
super(LayerReluActivationQuantize, self).__init__(
num_bits_weight=num_bits_weight,
num_bits_activation=num_bits_activation)
self._num_bits_weight = num_bits_weight
self._num_bits_activation = num_bits_activation
def pattern(self):
return LayerPattern(
'Activation',
config={'activation': 'relu'},
inputs=[LayerPattern('Add|Conv2D|DepthwiseConv2D|Dense')])
class InputLayerQuantize(transforms.Transform):
"""Quantizes InputLayer, by adding QuantizeLayer after it.
InputLayer => InputLayer -> QuantizeLayer
"""
def __init__(self, num_bits_weight: int = 8, num_bits_activation: int = 8):
self._num_bits_weight = num_bits_weight
self._num_bits_activation = num_bits_activation
def pattern(self):
return LayerPattern('InputLayer')
def replacement(self, match_layer):
quant_layer = quantize_layer.QuantizeLayer(
quantizers.AllValuesQuantizer(
num_bits=self._num_bits_activation, per_axis=False,
symmetric=False, narrow_range=False)) # activation/output
layer_config = quantize_utils.serialize_layer(
quant_layer, use_legacy_format=True
)
layer_config['name'] = quant_layer.name
quant_layer_node = LayerNode(
layer_config,
input_layers=[match_layer])
return quant_layer_node
def custom_objects(self):
return {
'QuantizeLayer': quantize_layer.QuantizeLayer,
'MovingAverageQuantizer': quantizers.MovingAverageQuantizer,
'AllValuesQuantizer': quantizers.AllValuesQuantizer
}
class ConcatTransform(transforms.Transform):
"""Transform for Concatenate. Quantize only after concatenation."""
# pylint:disable=protected-access
def __init__(self, num_bits_weight: int = 8, num_bits_activation: int = 8):
self._num_bits_weight = num_bits_weight
self._num_bits_activation = num_bits_activation
def pattern(self):
# TODO(pulkitb): Write a clean way to handle length patterns.
return LayerPattern(
'Concatenate', inputs=[LayerPattern('.*'), LayerPattern('.*')])
def _get_layer_type(self, layer_class_name):
keras_layers = inspect.getmembers(keras.layers, inspect.isclass)
for layer_name, layer_type in keras_layers:
if layer_name == layer_class_name:
return layer_type
return None
def _disable_output_quantize(self, quantize_config):
# TODO(pulkitb): Disabling quantize_config may also require handling
# activation quantizers. Handle that properly.
quantize_config.get_output_quantizers = lambda layer: []
def replacement(self, match_layer):
concat_layer_node = match_layer
feeding_layer_nodes = match_layer.input_layers
default_registry = (
default_n_bit_quantize_registry.DefaultNBitQuantizeRegistry(
num_bits_weight=self._num_bits_weight,
num_bits_activation=self._num_bits_activation))
feed_quantize_configs = []
for feed_layer_node in feeding_layer_nodes:
quantize_config = feed_layer_node.metadata.get('quantize_config')
if not quantize_config:
layer_class = self._get_layer_type(feed_layer_node.layer['class_name'])
if layer_class is None:
# Concat has an input layer we don't recognize. Return.
return match_layer
if layer_class == keras.layers.Concatenate:
# Input layer to Concat is also Concat. Don't quantize it.
feed_layer_node.metadata['quantize_config'] = (
configs.NoOpQuantizeConfig())
continue
if not default_registry._is_supported_layer(layer_class):
# Feeding layer is not supported by registry
return match_layer
quantize_config = default_registry._get_quantize_config(layer_class)
feed_layer_node.metadata['quantize_config'] = quantize_config
feed_quantize_configs.append(quantize_config)
# TODO(pulkitb): this currently only disables output quantize config, but
# cannot properly handle if the FQ was added to the activation. Hand this
# properly.
for quantize_config in feed_quantize_configs:
self._disable_output_quantize(quantize_config)
if not concat_layer_node.metadata.get('quantize_config'):
concat_layer_node.metadata['quantize_config'] = (
configs.DefaultNBitOutputQuantizeConfig(
num_bits_weight=self._num_bits_weight,
num_bits_activation=self._num_bits_activation))
return concat_layer_node
# pylint:enable=protected-access
class ConcatTransform3Inputs(ConcatTransform):
"""Transform for 3 inputs Concatenate."""
def __init__(self, num_bits_weight: int = 8, num_bits_activation: int = 8):
super(ConcatTransform3Inputs, self).__init__(
num_bits_weight=num_bits_weight,
num_bits_activation=num_bits_activation)
self._num_bits_weight = num_bits_weight
self._num_bits_activation = num_bits_activation
def pattern(self):
return LayerPattern(
'Concatenate',
inputs=[LayerPattern('.*'), LayerPattern('.*'), LayerPattern('.*')])
class ConcatTransform4Inputs(ConcatTransform):
"""Transform for 4 inputs Concatenate."""
def __init__(self, num_bits_weight: int = 8, num_bits_activation: int = 8):
super(ConcatTransform4Inputs, self).__init__(
num_bits_weight=num_bits_weight,
num_bits_activation=num_bits_activation)
self._num_bits_weight = num_bits_weight
self._num_bits_activation = num_bits_activation
def pattern(self):
return LayerPattern(
'Concatenate',
inputs=[LayerPattern('.*'), LayerPattern('.*'), LayerPattern('.*'),
LayerPattern('.*')])
class ConcatTransform5Inputs(ConcatTransform):
"""Transform for 5 inputs Concatenate."""
def __init__(self, num_bits_weight: int = 8, num_bits_activation: int = 8):
super(ConcatTransform5Inputs, self).__init__(
num_bits_weight=num_bits_weight,
num_bits_activation=num_bits_activation)
self._num_bits_weight = num_bits_weight
self._num_bits_activation = num_bits_activation
def pattern(self):
return LayerPattern(
'Concatenate',
inputs=[LayerPattern('.*'), LayerPattern('.*'), LayerPattern('.*'),
LayerPattern('.*'), LayerPattern('.*')])
class ConcatTransform6Inputs(ConcatTransform):
"""Transform for 6 inputs Concatenate."""
def __init__(self, num_bits_weight: int = 8, num_bits_activation: int = 8):
super(ConcatTransform6Inputs, self).__init__(
num_bits_weight=num_bits_weight,
num_bits_activation=num_bits_activation)
self._num_bits_weight = num_bits_weight
self._num_bits_activation = num_bits_activation
def pattern(self):
return LayerPattern(
'Concatenate',
inputs=[LayerPattern('.*'), LayerPattern('.*'), LayerPattern('.*'),
LayerPattern('.*'), LayerPattern('.*'), LayerPattern('.*')])
|